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Even More MACRO!
 Increased Mass and Size
 Longer Coherence Time
 “Cooler” New Devices
 ... ...

Even More QUANTUM!
 Non-Classical Motional State 
 Entangled Multi Devices
 Macroscopic Quantum E�ects
 ... ...

Macro Cavity

Ring CavityAcoustic DBR Coating
More massive (mg)
High Mech Q (107)
Sideband Cooling

Total Internal Reflection
High Mech Q (108)
Sideband Cooling
Lower Base Occupancy 

Continous Wave
Coherent State
Displaced Thermal
High Amplitude

anti-Stokes

Optical Beat Drive
Scattered Photon

Probe

Applications
 Quantum Gravity E�ect (Non-local dynamics) 
 SQL in Acoustic Interferometer
 Macroscopic Quantum Mechanics
 ... ...

C
oh

er
en

t S
ta

te
 

1.0

1.5

2.0

2.0

3.0

4.0

101

103

105

10-1

0 50 100 150 

10-3

10-2

10-1

100

10-4

100 102 103 104101

Thermal State

Coherent State

315.24 315.27 315.30 315.33

-40dBm
-34dBm
-28dBm
-22dBm
-16dBm
-10dBm
  -4dBm

104

106

108

102

-45 -35 -25 -15 -5

104

106

108

3

5

7

100 104103102101

101 102

2.2

2.4

2.6

En
ta

ng
le

d 
St

at
e 

Pulsed Pump
Non-Classical State
Cross-Correlation
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QSA

1 Phonon

Photon-phonon Entanglement
 Prepare the mechanical state 
 Send a blue-detuned pulse (Two-mode Squeezing)
  ☞Add one phonon into the mechanical mode
 Send a red-detuned pulse (State Swap)
  ☞Swap the mechanical state into the optical mode
 Measure the correlation between photons

 
 
 

Cauchy-Schwarz Inequality
 

 Negative Glauber-Sudarshan P-function with 99.5% Confidence
 on a Macroscopic, Massive (~1 ng) resonator
 

Phonon Coherent State
 Nearly ZPF (<3 Phonon) in the motional state
 Realize nearly coherent states up to 104 phonons
 in a massive mechanical oscillator(~1 ng)
 Characterize displaced thermal states by 
measuring the first-order and the second-order 
coherence of the anti-Stokes photons
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 High-order Phonon Correlations*

 Photon-phonon correspondance
 Phonon bunching e�ect
 Charaterize phonon statistics of a 
thermal state up to 4th order
 Less than 4 phonons
 Reconstruct Wigner function?

Phonon Added/Substracted States
 Heraled protocol
 Nonclassical states preparation
 ... ...

*PhysRevLett.128.183601 (2022)
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Photon Counting
 Nonlinearity induced by measurement projection
 Measure motional state by photon statistics
 Weak measurements
 ‘Heralded’ protocols to prepare Nonclassical state
  ☞ Phonon-photon entanglement
  ☞ Fock states
  ☞ Entanglement of two mechanical oscillators
  ☞ ... ...
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Quantum Optomechanics
 Single-mode optomechanics
 Stokes/anti-Stokes scattering
 Quantum backaction
 Quantum sideband asymmetry
 Zero point fluctuation (ZPF)
 Photon correlations
 
 
 

Motivation

125 µm

5 mm

20 mK

Superfluid
Helium

Ferrule

Fiber

Why Superfluid Helium:
 19 eV bandgap
 Zero chemical impurities
 Zero structural defects
 Zero viscosity
 High thermal conductivity
 Self-aligned optical & acoustic modes
 Can host new hybrid quantum systems
 
Goal of the Experiment:
 Quantum optomechanics
 Macroscopic quantum phenomena
 Test quantum gravity e�ects
 Promising system for light DM searches
 Quantum sensing
 Quantum memory
 Superfluid dynamics
 ... ...
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