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Superfluid “He provides unique advantages to fulfill the requirements of quantum optomechanics, The WGMs are propagating along the drop circumierence.
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High energy band vanishing optical absorption 2. Beam frequency is the eigenfrequency. _ S

Zero viscosity contributing low mechanical loss Wh_e_never there is a set of double dips, the drop circumference 2 0k

High thermal conductivity shirinks by_ one wavelength. | | =

Self-cooling via evaporation We e_xpe.rlmentally show that these double dips correspond to different 5

Low material impurity polarllzatlons (TE, TM modes).

The finesse measured so far ranges 10~102.
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< 55 setups. The goal is to: f uperflui e can’t undergo rigid body rotation.The angular

momentum is in the form of vortices.
Normal fluid *He can undergo rigid body rotation.quantum fluc-
tuations of L can be read out through opto-rotational couplings.
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Radial Distance (cm) Make the drops larger (> 2 mm);
Eliminate the center of mass motion;
Further cool down the drop;

Increase coupling efficiency. A
, | A Helium-3 Drop
We made following changes to achieve goals
above: ' Levitating a *He drop is more challenging than a *He drop mainly
| because of the non-zero nuclear spin. Consequently, this residu-
Embedded variable temperature controller; In situ 45° mirror al spin leads to paramagnetism which cancels the diamagnetism

we employ to levitate Helium. As a nearly non-interacting Fermi
gas, the paramagnetism follows Curie’s law in high temperature ;

High voltange electrodes; . :
~ Change the experimental cell material; '
Y\ In situ optics. k and staturates to Pauli paramagnetism in low temperature (cancels 3He
o 40% of diamagnetism). The relaxation time T, of *He spin ranges |

» & A FO s R from 500 s to 3,000 s, which enables us to control its net spin via RF waves.
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