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Quantum optomechanics describes utilizing optics to precisely manipulate and read out
the motional degrees of freedom of a mechanical oscillator. If the mechanical oscillator is
very weakly coupled to its environment, then the optomechanical interaction can be used to
control the state of the mechanical oscillator in a quantum way. Applying these systems to
advanced sensing techniques has inaugurated experiments on dark matter searches, grav-
itational wave detection, quantum gravitational phenomena tests, and sensing beyond the
standard quantum limit. I am motivated by asking: “What is the largest and most tangi-
ble object to reveal purely quantum phenomena?” In addition, I seek to use mechanics to
explore quantum-enhanced applications.

In this thesis, I describe my work toward preparing quantum states of mechanical mo-
tion in a cavity optomechanical system. The system is a Fabry-Pérot cavity that is filled
with superfluid helium. A density wave of the helium serves as the mechanical resonator,
whose effective mass is ∼1 ng. The radiation pressure of the light is used as a gentle
quantum “drumstick” to control the motion of the helium, while the helium, in exchange,
imprints information about its motion on the emitted light. For such a large object, a myr-
iad of different factors conspire to mask quantum effects. However, I can circumvent some
of the obstacles by leveraging the material properties of superfluid helium and by using
single-photon counting techniques.

In the experiment, I manipulated and characterized the state of the mechanics through
optomechanical coupling and by performing photon counting measurements on the scat-
tered light. I measured this mechanical resonator’s second/third/fourth-order coherence
functions while it was in a thermal state with less than three phonons. In addition, I drove
this mechanical resonator to a nearly coherent state. The state had around two phonons’
worth of fluctuations while its amplitude corresponded to 4× 104 phonons. More striking
quantum effects are related to states that are excluded by classical theories. Following the
DLCZ protocol, I conditionally prepared non-classical photon-phonon entangled states.
Their photon-phonon coherences violated a classical bound set by Cauchy-Schwarz in-
equality with a four-sigma significance.

I will also discuss our next steps using an even larger cavity to observe more macro-
scopic and more striking quantum features. Such a system shows prospects for dark matter
detection, gravitational wave detection, and testing non-standard modified quantum theory.
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Ŝ(� ) Squeezing operator with squeezing amplitude� de�ned asŜ(� ) � exp
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“Quantum phenomena do not
occur in a Hilbert space. They
occur in a laboratory.”

– Asher Peres

CHAPTER1
Introduction

In my graduate research, as an experimentalist, I am always motivated by asking

“What is the most macroscopic and tangible object which preserves purely
quantum effects?”

In the past century, quantum mechanics has revolutionized people's understanding of
physics and led to numerous applications. Today, there is a growing demand for the
preparation of various quantum states across different platforms in order to fully utilize
quantum-enhanced advantages in sensing, information, and computation [3, 4]. However,
one challenge lies in the fact that while quantum mechanics is well-established in micro-
scopic systems such as atoms and molecules, it becomes increasingly dif�cult to demon-
strate these phenomena on a macroscopic scale. Experimentally demonstrating quantum
phenomena in larger objects1 would lay the groundwork for scaling up quantum machines,
such as quantum computers of larger geometric size and quantum sensors of larger mass
and size. Moreover, it would provide opportunities to test quantum mechanics in previ-
ously inaccessible regimes. Such tests could constrain a number of modi�ed quantum
theories that have been proposed even for years, whose differences with usual quantum
mechanics are most evident at macroscopic scales [5–9].

On the application side, we seek to use these purely quantum effects to store, trans-
mit and even process information in an essentially quantum way. This leads to various
applications in different �elds. For instance, certain quantum states manifest information
capacities outperforming any classical states (de�ned as a state whose quasi-probability
function is non-negative) prepared in the same object, which advances communication
[10–16]. In the job of sensing, quantum states such as squeezed states [17–20], Fock
states [21], superposition states[22], or entangled states [23–25] can be used to surpass the
standard quantum limit. Regarding computation, replacing classical bits of information
with quantum states of two-level systems (known as qubits) has been shown to lead to
speed up for solving certain problems [26–31].

1Large objects can refer to a system of many degrees of freedom and a system with a large geometric
size and a large mass. The latter is the focus of this thesis.
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On the fundamental side, the two pearls of theoretical physics discoveries in the 20th
century, quantum mechanics and general relativity, accurately describe the dynamics of
microscopic systems on one hand, and the geometry of spacetime in gravitationally dom-
inated systems on the other hand. A natural question to raise is, what will happen if we
preserve quantum mechanical phenomena, such as superposition or entanglement, in large
objects such that we can also measure their gravitational effects [32, 33]? In addition to
this purely empirical curiosity, there are reasons to question the applicability of quantum
theory beyond certain scales. One of them is that it is dif�cult to reconcile quantum theory
with general relativity, in which spacetime itself is treated as a dynamic quantity. More
intuitively speaking, in quantum mechanics, a massive object can be prepared in a spa-
tial superposition state. According to general relativity, any mass will curve space-time.
Therefore, it leads to a super-positioned spacetime, which is not well-de�ned in general
relativity [34–36]. The experimental observation of macroscopic quantum phenomena is
well-motivated to test new theoretical frameworks [1, 9, 37–39] or may even lead to new
scienti�c discoveries.

The manifestation of quantum effects in a large object is often hindered by a variety
of factors, for example in the very short de Broglie wavelengths on very closely spaced
energy levels associated with large objects. In addition, it is extremely challenging to
isolate a large object from its environment. Coupling to an uncontrolled and unmeasured
environment generically leads to the loss of quantum effects.

Nevertheless, with meticulous and precisely controlled experiments, purely quantum
effects can be revealed. Mechanical resonators are regarded as an excellent system to test
quantum mechanics, as their isolation, coupling, and hybridization can be engineered and
controlled in the quantum regime [40–42]. Mechanical resonators also offer tremendous
potential as components of hybrid quantum systems, as they can be integrated with super-
conducting qubits, photons, and spins, due to their ability to couple to a broad range of
forces while being nearly isolated from the environment.

Optomechanics (as evident from its etymological origin) describes utilizing optics to
precisely manipulate and read out the motional degrees of freedom of a mechanical os-
cillator [43–50]. The radiation pressure of the light is used as a gentle “drumstick” to
drive the motion of the mechanical resonator. The mechanical resonator, in exchange, im-
prints its motion on the light. This interaction is unitary, which means the optical and the
mechanical systems evolve coherently.

Experiments that use near-infrared and visible light can take advantage of the fact
that these frequencies are high enough that their quantum states can be preserved at room
temperature. Moreover, well-developed technology exists for controlling and producing
a range of quantum states, which can be transferred from light to motion via the unitary
optomechanical interaction. Therefore, this system allows for manipulations and measure-
ments of the state of the mechanical resonator in the quantum regime.

The implementations of optomechanical systems vary in size, frequency scale, and the
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manner of coupling [18, 51–54]. The common idea behind the different designs is that an
optical resonator is detuned by the motion of some mechanical element, and the radiation
pressure of the optical �eld modulates the mechanical motion in turn. For example, there
are cavities with moveable end mirrors, such as LIGO [18, 55]. The positions of the mir-
rors change the cavity length and therefore the cavity resonance frequency. Alternatively,
a mechanical resonator placed in the middle of a rigid optical cavity can also modulate
the cavity frequency (this approach is used by the membrane in the middle or levitated
particles experiments [52, 54, 56]). Optomechanical crystals, which are nanodevices with
periodic patterns in a dielectric material that supports both optical and mechanical modes,
are another extremely successful implementation [51, 57]. Moreover, to extend ideas into
the microwave domain, a superconducting LC circuit couples to the vibrations of the ca-
pacitor or the inductor in a manner that results in the same physics as optics-based op-
tomechanical systems [58–62]. These microwave systems are of special interest because
of the signi�cant development in superconductor-based quantum computers.

In general, low losses in mechanical modes, high optical �nesse, strong optomechani-
cal coupling, and cryogenic temperature are all preferred for quantum optomechanics. The
goal is that the overall unitary coupling strength overcomes all kinds of dissipations in the
system, which is a milestone for applications and tests in the quantum world.

To overcome the aforementioned challenges, the work described in this thesis used
an optomechanical system that is built using super�uid helium. Super�uid helium offers
plenty of material properties that bene�t optomechanical applications, such as ultra-low
optical absorption and ultra-low acoustic loss [63]. Hence, super�uid helium is possibly
the best material to host quantum effects on the macroscopic scale.

It is distinct from most quantum optical and quantum acoustic materials in that it is
a liquid. As the ancient Chinese philosopher Laozi described water, “) �K ó Ô �
p‹ ) �K ó Z � ”2 It means: “The world's most �exible gallops between the world's
most �rm.” Unlike most conventional solid-based devices, the geometry of the liquid in our
devices is de�ned by its “container” and the mechanical mode frequency can be tuned over
a wide range via straightforward pressurization. Liquid helium can also be hybridized with
other quantum systems. For instance, experiments on electron bubbles in helium [64, 65],
ions in helium [66, 67] and electrons on helium surfaces [68, 69] have been experimentally
demonstrated.

In my experiment, the optomechanical system is a super�uid-helium-�lled optical cav-
ity. Fig. 1.1 shows a schematic of the device. We start with a miniature Fabry-Pérot cavity
formed between the end faces of two optical �bers. The two �bers are200µm in diameter
with their end faces separated by� 70µm. The alignment is achieved using a glass ferrule,
which con�nes two �bers coaxially. This empty cavity is �lled with super�uid helium.
The experiment is operated in a dilution fridge at a temperature� 20 mK.

2Quoted from Chapter 43,
 Tao Te Ching (S · Ï )�
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Figure 1.1: Device schematic: An optical Fabry-Pérot cavity, which is formed by two
�ber end faces, is �lled with super�uid4He. Blue shading denotes the instantaneous4He
density in a mechanical mode. Orange denotes the optical mode intensity.

We coated the �ber end faces with highly re�ective mirrors for optical waves with
a wavelength equal to1550 nm. The optical mode studied in this thesis is a Hermite-
Gaussian mode. The mechanical resonator is the density wave of the liquid helium con-
�ned by the same end faces, as shown in the blue shadings of Fig. 1.1. The effective mass
of the mechanical mode (de�ned in Eq. 2.16) is� 1 ng.

The optomechanical interaction is mainly achieved by the photoelastic effect. More
speci�cally, helium is attracted to the high optical intensity area by the electrostrictive
force, while the density wave of helium detunes the optical resonance frequency. This
coupling is unitary, and its strength is proportional to the overlap between the intensity
of the optical mode and the amplitude (i.e., change of helium density) of the mechanical
mode.

The mechanical mode and the optical mode are determined by the same differential
equations and the same boundary conditions, resulting in the same spatial eigenmodes for
both the optical and the mechanical resonators. Since different eigenmodes are orthogonal
to each other, it is straightforward to show that, to a good approximation, only one me-
chanical mode couples to any given optical mode. This relation is named the single-mode
optomechanical coupling.

In the measurement, we employed single photon counting techniques to achieve the
required quantum measurement and control. This is because the information about the
mechanical state is transferred into the optical output, which is sent to single photon
detectors. The mechanical state can be characterized by the arrival time of photons.
Furthermore, we utilize the so-called measurement-backaction-induced nonlinearity to
conditionally prepare some quantum states. This is possible because the arrival of one
Stokes/anti-Stokes photon heralds the addition/subtraction of one phonon to/from the me-
chanical mode. Therefore, the state of the mechanics can be post-selected by performing
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photon counting measurements on the light emerging from the cavity.
As a proof-of-principle demonstration, we �rst characterized a mechanical thermal

state under this scheme. The mechanical mode with resonance frequency! m=2� � 315 MHz,
which coupled to the1550 nmoptical mode, was thermalized to near its ground state [70–
72]. The phonon occupancy was determined from the asymmetric photon count rates of
the two mechanical sidebands. The high-order coherences of arrival photons were also
measured, and veri�ed the Gaussianity of the thermal state with a high degree of statistical
signi�cance [72].

In separate measurements, we drove the mechanical mode using an optical beat note,
producing a displaced thermal state. The �rst- and second-order coherences of anti-Stokes
scattered photons were used to characterize this state. We experimentally demonstrated
that the mechanical mode maintained around two phonons' worth of thermal �uctuation
while being driven to a coherent amplitude corresponding to4 � 104 phonons.

More striking quantum effects and quantum advantages are related to states which
are excluded by classical theory [3, 4, 73]. Following the DLCZ protocol [74–76], a
non-classical photon-phonon entangled state was conditionally prepared. The measured
photon-phonon cross-correlation violated a classical bound with four-sigma signi�cance,
which veri�ed the non-classicality of the state.

Along this line, we are still exploring even larger mechanical resonators in more exotic
quantum states, like mechanical non-Gaussian states and squeezed states. Furthermore, we
are also aiming to entangle massive resonators separated in space. These massive macro-
scopic resonators in quantum regimes also hold promise for developing hybrid quantum
technologies that exploit the enhanced sensing and measurement capabilities of quantum
mechanics.

The main objective of this thesis is to give a comprehensive account of the experiments
that were carried out during my graduate studies. Additionally, the thesis provides a con-
cise overview of quantum optomechanics, quantum statistics, and macroscopic quantum
effects, along with the theoretical results that I derived in order to analyze and interpret
our data. Finally, I also offer a glimpse into the future prospects of this experiment with
some straightforward calculations.

The main structure of the thesis is as follows:

� Chapter 2 In this chapter, I present a brief overview of quantum optomechanics.
The chapter begins with a simpli�ed classical model, which is used to derive the
fundamental optomechanical dynamics in detail. This is followed by a discussion
centered on the phenomena in the resolved-sideband regime, as this is relevant to
the experiment in this thesis. To compare the performance of different systems, I
also discuss the �gure of merit for quantum optomechanics systems. Finally, the
basic parameters of the device used in this work are provided to address the relevant
optomechanical effects discussed in this chapter.
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� Chapter 3 This chapter aims to discuss the statistical properties of quantum states
that are relevant to the experiment in this thesis. I start with a brief overview of
photon statistics, including photon counting statistics, correlations, and coherences.
Especially, I focus on the coherence functions of various relevant states because
coherences are independent of the detection ef�ciency. Detailed derivations of the
decoherence process of some relevant states are also provided. Additionally, this
chapter also brie�y discusses different quasi-probability distributions and their rela-
tions to coherence functions. Finally, I discuss various criteria in the experiment to
distinguish non-classical states from classical states.

� Chapter 4 This chapter brie�y discusses the motivation for studying macroscopic
quantum phenomena. I talk about one possible measure to access the macroscop-
icity of the quantum phenomena across different platforms. Then, I focus on two
possible non-standard modi�ed quantum theories that are proposed to be tested by
optomechanical systems phenomenologically.

� Chapter 5 This chapter describes the super�uid-helium-�lled Fabry-Pérot cavity
that is studied in this thesis. I describe the basic properties of the cavity, such as its
geometry, optical properties, acoustic properties, etc. Then, I present the expected
optical and mechanical modes of this optomechanical cavity. Particularly, I show the
approximated single-mode optomechanical coupling relation (i.e., a given optical
Gaussian mode only couples to one mechanical mode). Finally, I also study the
possible mechanisms for a given optical mode coupling to other mechanical modes
(besides the mainly coupled one).

� Chapter 6 In this chapter, I describe the experiment setups and the measurement
scheme in detail. I characterized the optical and mechanical modes in this device.
The optomechanical coupling is then characterized by the observed optomechanical
dynamical backactions. Finally, I showed the weak coupling of a given optical to
some other mechanical modes.

� Chapter 7 This chapter starts by showing how we use photon counting statistics
to interpret phonon statistics by the photon-phonon correspondence in Stokes and
anti-Stokes scattering. It is followed by the statistical methods I implemented in this
work to estimate the true coherences of photons. With these, I further demonstrate
the measurement results of an undriven mechanical mode (thermal state). I also
show the coherence functions of some post-selected states.

� Chapter 8 This chapter describes the protocol for preparing a displaced thermal
state in the mechanical oscillator. I talk about the setup used to generate optical
drive beat notes. Then, I show the properties of the mechanical mode when it is
driven. The statistical properties of arrival photon times measure the phonon number
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variance, proving this device's capability to maintain low noise while being driven
to large amplitude. In addition, I discuss two potential applications of using this
massive mechanical oscillator in a highly displaced thermal state.

� Chapter 9 This chapter describes the protocol for preparing and verifying entan-
gled photon-phonon pairs. I start with a brief overview of the DLCZ scheme. Then,
I present the theoretical prediction of the coherences in this device. The measured
coherences violate the classical bound set by the Cauchy-Schwarz inequality, prov-
ing the nonclassicality of the joint state. Finally, I talk about the several limits to
have a more obvious violation in this device.

� Chapter 10 This chapter outlooks the potential results of a macro-cavity. I present
two major technical improvements that are expected to be achieved by using the
new design. With these improvements, I present several scienti�c goals that we
aim to accomplish in macro-cavity. A more `macroscopic' and more `quantum'
mechanical oscillator may lead to new insights into future quantum applications and
their prospects for new scienti�c discoveries.
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“Let there be light, and there
was light.”

– Genesis

CHAPTER2
Quantum Optomechanics

Light is a versatile tool in a wide range of �elds due to its unique properties, such as high
speed, low power consumption, and non-invasiveness. It couples to various systems by
photothermal effects, photoelastic effects, radiation pressure, or by changing a material's
refractive index. Therefore, light can be used to control various systems, including biolog-
ical cells, electronic devices, and mechanical systems. The ability to use light as a control
tool has led to numerous breakthroughs and advancements in various �elds, including
communication, biotechnology and quantum technology.

Optomechanics is the study of the interaction between light and mechanical motion. It
involves the manipulation of optical and mechanical systems to develop practical applica-
tions, such as ultra-sensitive sensors and precision measurements.

Quantum optomechanics is motivated by the aim of using the mature toolbox of cavity
quantum optics to study and use quantum effects in the motion of massive, macroscopic
degrees of freedom. The �eld has gained signi�cant attention in recent years, as dramatic
improvements in system designs have made it possible to access the mechanical motion in
the quantum regime. These systems include micro-mirrors, cantilevers, levitated particles,
membranes, bulk acoustic waves, phononic crystals and even the large suspended mirror
of LIGO [18, 52, 53, 59–62]. Quantum optomechanics shows vast perspectives of pro-
viding new insights into quantum physics and advancing quantum technologies based on
mechanical motion, such as sensing, communication, and computing [11, 15, 18, 27, 28].

2.1 Optomechanical Dynamics

2.1.1 Radiation Pressure

Light, as an electromagnetic wave, carries energy and momentum. In free space, energy
conservation gives

d
dt

�
1
2

� 0

Z

V
d3r

�
E � E + c2B � B

�
�

+
Z

S
dAS � n̂ = 0: (2.1)
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The �rst term is the total energy of the electromagnetic �eld, found by integrating the
electromagnetic energy density over a volumeV. The second term is the energy �ux of
the electromagnetic �eld through the surfaceS = @V, where

S =
1
� 0

E � B (2.2)

is the Poynting vector. The Poynting vectorS could be interpreted as an energy current
density through a surface.

An energy current density also means a �ow of momentum. The Maxwell stress tensor
is de�ned as:

 !
T = � 0

�
EE + c2BB �

1
2

I
�
jEj2 + c2jB j2

�
�

; (2.3)

and the electromagnetic momentum density is

g =
S
c2

= � 0(E � B ): (2.4)

In addition, we have the local conservation law for momentum:

@g
@t

+ r � (�
 !
T ) = 0 : (2.5)

Eq. (2.1) to (2.5) yield the radiation force exerted on an object, which is given by
R

S dA �
 !
T � n̂.

The concept of the photon originated from Albert Einstein's explanation of the pho-
toelectric effect, in which he proposed the discreteness of light energy and momentum
[77]. For a coherent state of light, which can be regarded as an idealized description of the
output of a laser, the number of photons arriving at the detector in a given time interval
follows the Poisson distribution, which leads to �uctuations in the measured photocurrent.
This type of statistical noise is called “shot noise”. The corresponding �uctuation in the
radiation pressure is called radiation pressure shot noise (RPSN). The �uctuation of the
photon number (photocurrent) can be written as

� 2
n =



n2

�
� h ni 2 =

� 

âyâyââ

�
�



âyâ

� 2
�

+


âyâ

�
: (2.6)

The second term in Eq. (2.6) is indeed the statistical variance.
The history of the experimental demonstration on radiation pressure starts in 1900

with a light mill con�guration [78] and in 1901 with the de�ection of a torsion balance
under illumination by a lamp [79]. In recent experiments, radiation pressure shot noise
has been discovered on mechanical resonators [80–82]. The ability of radiation pressure
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to cool mechanical resonators was investigated and implemented even in a wide range of
experiments [81–84], including LIGO's kilogram-scale mirrors [18, 19].

2.1.2 Optical Cavities and Mechanical Resonators

2.1.2.1 Optical Cavity

To enhance the coupling between light and mechanics, most experiments arrange for the
light to travel back and forth in an optical cavity multiple times. Optical cavities can be
realized in various forms. Here, a simple Fabry-Pérot resonator is used as an example to
show a unifying mathematical description of optical cavities.

A Fabry-Ṕerot resonator consists of two highly re�ective mirrors facing each other. If
the two mirrors are separated by a distanceL cav, this resonator contains a series of reso-
nances with frequencies! cav � m�c=L cav, where the integerm is the longitudinal mode
index. The free spectral range (FSR) (the spacing between two consecutive resonances) of
the cavity

� ! FSR = �
c

L cav
: (2.7)

Another useful parameter to characterize a cavity is its �nesseF , which describes the
average number of round-trips before the light leaves the cavity. It is de�ned as

F �
� ! FSR

�
; (2.8)

where� is the overall light intensity decay rate originating from the material absorption,
scattering, and mirrors' transmissivity.

For an ideal Fabry-Ṕerot cavity, the only loss mechanicsm is the transmission through
the two end mirrors. For a non-ideal cavity, the total cavity loss rate can be written as
the sum of two contributions: the loss at the input cavity mirror� ex and the unrecorded
internal loss� 0 due to absorption, scattering, and the transmission loss at the second cavity
mirror. The loss� ex is considered to be useful because it is associated with the coupling
between the input-output mode (which is accessible to the experimentalist) and the intra-
cavity light. The input coupling ef�ciency� � is de�ned as

� � =
� ex

�
; (2.9)

where� = � 0 + � ex.
The dynamics of the optical cavity can be well described by input-output theory, which

allows us to take the quantum �uctuations into account. The equation of motion for the
�eld amplitude â inside the cavity (in a rotating frame at the input laser frequency! L ) is

10



given by

_̂a = �
�
2

â + i �^a +
p

� exâin +
p

� 0f̂ in : (2.10)

Here, instead of a complex number as in classical theory, the amplitudeâ is an operator in
the Heisenberg picture.� = ! L � ! cav is the laser detuning from the cavity resonance.
For an open quantum system, the �eld emitted from the Fabry-Pérot cavity reads

âout = âin �
p

� exâ: (2.11)

By taking the average of Eq. (2.10) and (2.11), for a steady state, the mean intra-cavity
�eld amplitudeĥai is:

ĥai =
p

� ex ĥain i
�= 2 � i �

: (2.12)

This equation directly leads to the well-known optical susceptibility, which is de�ned as
the ratio between the intracavity �eld and the input �eld:

� cav(! ) �
1

� i (�) + �= 2
: (2.13)

This is an approximate result under the assumption that all the cavity resonances are re-
solved, which is generally true for a high �nesse optical cavity (A more general discussion
about the susceptibility of a low �nesse cavity could be found in Ref. [85]). Therefore, the
mean intra-cavity circulating photon number is

ncav = jĥaij 2 =
� ex

� 2 + ( �= 2)2

Pin

~! L
; (2.14)

wherePin is the input power into the cavity, withP = ~! L jĥain ij 2.

2.1.2.2 Mechanical Resonator

The mechanical resonator can be any vibrational mode of any object. For a high-Q os-
cillator, the mode spectrum is suf�ciently sparse to study the single mode dynamics by
neglecting other modes.

The time evolution of a harmonic oscillator's displacementx(t) is governed by the
following equation:

me�
dx2(t)

dt2
+ me� 
 m

dx(t)
dt

+ me� ! 2
mx(t) = Fex(t): (2.15)

Here,me� is the effective mass,! m is the mechanical mode frequency,
 m is the mechan-
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ical mode loss rate, andFex(t) denotes the force exerted on the mechanical oscillator. The
effective massme� can be evaluated by equilibrating the potential energy of the �eld to
the potential energy of an effective oscillator with the same frequency oscillating and the
same maximal amplitudexmax [86]. That is

me� ! 2
mx2

max=2 =
Z

d3r � (r )! 2
mx2

maxu2(r )=2; (2.16)

whereu(r ) is the normalized �eld pro�le. Eq. (2.15) can be solved either in the time
domain or in the frequency domain. For brevity of the following content, only the result
in the frequency domain is presented.

By operating Fourier transformation on both sides of Eq. (2.15), we have

� me� ! 2x[! ] + me� ! 2
mx[! ] � i!m e� 
 mx[! ] = Fex[! ]: (2.17)

Therefore, the mechanical susceptibility� m reads

� m(! ) =
�
me�

�
! 2

m � ! 2
�

� im e� 
 m!
� � 1

: (2.18)

In the quantum picture, the Hamiltonian of a harmonic oscillator is

Ĥ = ~! mb̂yb̂+
1
2

~! m; (2.19)

whereb̂y and b̂ are phonon creation and annihilation operators, respectively. They are
formulated in the following expressions:

x̂ = xZPF (b̂+ b̂y); p̂ = � im e� ! mxZPF (b̂� b̂y): (2.20)

xZPF is the zero-point �uctuation amplitude of the mechanical resonator, de�ned as:

xZPF =

r
~

2me� ! m
: (2.21)

It describes the spread of the mechanical ground state in the coordinate, originating from
the Heisenberg uncertainty principle.

2.1.3 Optomechanical Coupling

In this section, we discuss the optomechanical coupling in a Fabry-Pérot cavity with a
movable end mirror. This example aims to demonstrate the mathematical formulation of
the general coupling framework. Further, I will restrict the theory to the single-mode cou-
pling regime, in which only one optical mode of resonance! cav couples to one mechanical
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Figure 2.1: Schematic of a Fabry-Pérot cavity with a movable end mirror.

resonance! m. A schematic of such a cavity is shown in Fig. 2.1.
The uncoupled system can be represented by two harmonic oscillators:

Ĥ0 = ~! cav âyâ + ~! mb̂yb̂: (2.22)

If the cavity resonance depends on the displacementx of the mechanics, its resonance
frequency can be expanded as

! cav(x) � ! cav + x@!cav=@x+ � � � : (2.23)

The coupling strength is further de�ned as the optical resonance frequency shift per dis-
placement. That is,

G = � @!cav=@x: (2.24)

For a Fabry-Ṕerot cavity of lengthL cav, we haveG = ! cav=Lcav. The optical cavity Hamil-
tonian can be reexpressed by keeping the leading linear term in the expansion Eq. (2.23)
as

~! cav(x)âyâ � ~(! cav � Gx̂)âyâ: (2.25)

Substituting Eq. (2.20) and (2.25) into Eq. (2.22), we have an additional interaction Hamil-
tonian

Ĥ int = � ~g0âyâ(b̂+ b̂y); (2.26)

whereg0 = GxZPF is the vacuum optomechanical coupling strength or the single photon
coupling strength. This parameter is useful as it is normalized to the single quanta level,
which bene�ts discussions in quantum optomechanics. For simplicity, the Hamiltonian is
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usually described in a rotating frame at the laser frequency! L , given by

Ĥ = � ~�^ayâ + ~! mb̂yb̂ � ~g0âyâ(b̂+ b̂y): (2.27)

Notably, the interaction Hamiltonian in Eq. (2.27) is nonlinear. A linearization ap-
proximation is often applied to cavity optomechanics to simplify various calculations. It is
based on the assumption that the optical cavity is driven to a large amplitude. We introduce
the cavity optical �eld �uctuation term� â to split the total �eld as

â = �� + � â: (2.28)

The interaction Hamiltonian can then be reduced into a Hamiltonian of linear interactions:

Ĥ (lin)
int = � ~g0

p
ncav

�
� ây + � â

�
(b̂+ b̂y): (2.29)

Here, we have dropped one higher-order term:� ~g0� ây� â in the small �uctuation limit,
and

p
ncav = j �� j is the average of the �eld amplitude.

The linearized approach is suf�cient for understanding many aspects of cavity optome-
chanics, including displacement detection down to the SQL, optomechanical ground-state
cooling theory, optomechanical hybridization in the strong-coupling regime, optomechan-
ically induced transparency, optomechanical light squeezing, and nearly all entanglement
and state transfer techniques presented in the literature [44].

Quantum effects can also be observed in the linearized regime. Proving their quan-
tumness usually requires a quantitative comparison, such as with the oscillator's or light
�eld's zero-point �uctuations. However, the drawback of relying solely on the linearized
interaction is that it always transforms Gaussian states of the mechanics and light �eld into
other Gaussian states. Although these states can be squeezed or entangled, they will never
have a negative Wigner density [4].

Nevertheless, there are ways to move beyond the linear regime, such as by introducing
nonlinearity at the later stage of the experiment by using single-photon sources or single-
photon detectors to conditionally create nontrivial quantum states. These strategies are
similar to those employed in quantum optics [87–89]. A more detailed discussion can be
found in Sec. 3.2.3 and Sec. 3.5.2.

2.1.4 Dynamical Equations

In the discussion above, we have not included any lossy channels in the Hamiltonian.
Apart from the coupling between the optical cavity and the mechanical resonator, both
systems couple to external drives and the environment, which can be treated in the input-
output formalism by using the quantum Langevin equations.
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The complete coupled dynamical equations are

� _̂a =
�

i � �
�
2

�
� â + ig

�
b̂+ b̂y

�
+

p
� ex� âin (t) +

p
� 0f̂ in (t); (2.30a)

_̂b=
�

� i! m �

 m

2

�
b̂+ ig

�
� â + � ây

�
+

p

 mb̂in (t): (2.30b)

These linearly coupled equations can be Fourier transformed into the frequency domain as

� i!� â[! ] =
�

i � �
�
2

�
� â[! ] + ig

h
b̂[! ] + b̂y[! ]

i
+

p
� ex� âin [! ] +

p
� 0f̂ in [! ]; (2.31a)

� i! b̂[! ] =
�

� i! m �

 m

2

�
b̂[! ] + ig

�
� â[! ] +

�
� ây

�
[! ]

�
+

p

 mb̂in [! ]: (2.31b)

Also, linearized classical equations of motion for light and mechanics sometimes are
useful for Gaussian optomechanics with linear drives, and are given by

� i!�� [! ] =
�

i � �
�
2

�
�� [! ] + iG ��x [! ] (2.32a)

� me� ! 2x[! ] = � me� ! 2
mx[! ] + i!m e� 
 mx[! ] + ~G f �� � �� [! ] + �� (�� � ) [! ]g (2.32b)

Here, we use the relation(�� � ) [! ] = �� [� ! ]� .

2.2 Dynamical Backaction

This section will mainly discuss the dynamical effects of the radiation-pressure force. We
solve the linearly coupled equations of motion between the light and the mechanics shown
in Eq. (2.30a), (2.30b), (2.31a) and (2.31b). Because the thermal reservoir is Markovian
and the system linearly responds to the external drive, we also use Eq. (2.32a) and (2.32b)
for the following discussion and analysis.

2.2.1 Optical Spring Effects and Optomechanical Damping Rates

In the weak coupling limit(g0 � � ), the mechanical susceptibility acquires an additional
term�( ! ) to the original susceptibility because of the optomechanical coupling, becom-
ing:

� � 1
m;e� (! ) = � � 1

m (! ) + �( ! ): (2.33)
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This additional term can be solved by combining the coupled Eq. (2.32a) and (2.32b) to
�nd

�( ! ) = 2 me� ! mg2

�
1

(� + ! ) + i�= 2
+

1
(� � ! ) � i�= 2

�
; (2.34)

whereg is the optomechanical coupling strength de�ned asg = g0
p

ncav.
To see this effect on the original bare mechanical resonator more explicitly, we split

this term into real and imaginary parts as

�( ! ) � me� ! [2�! m(! ) � i
 opt (! )] : (2.35)

Thus, the total susceptibility becomes

� � 1
m;e� (! ) = me�

�
(! m + �! m(! ))2 � ! 2 � (�! m(! ))2 � i! [
 m + 
 opt (! )]

	
: (2.36)

Compared to Eq. (2.18), Eq. (2.36) implies a mechanical frequency shift�! m(! ) and an
additional optomechanical damping rate
 opt (! ). This intuitive understanding is appro-
priate when the mechanical frequency shift is much smaller than the drive frequency,i.e.,
�! m(! ) � ! 2

m, so that we can drop(�! m(! ))2 in Eq. (2.36).
Explicit expressions for these two parts are

�! m(! ) = g2 ! m

!

�
� + !

(� + ! )2 + � 2=4
+

� � !
(� � ! )2 + � 2=4

�
; (2.37a)


 opt (! ) = g2 ! m

!

�
�

(� + ! )2 + � 2=4
�

�
(� � ! )2 + � 2=4

�
: (2.37b)

They are the exact solution of the linearized coupled equation Eq. (2.32a) and (2.32b).
The power dependence of these two parameters only appears ing2 = g2

0ncav, which
indicates that both the damping and spring effects are proportional to the circulating photon
number inside the cavity, and hence, the incident laser power.

For a given optical input at detuning� , the dependence of�( ! ) on ! is more com-
plicated. In general, the overall susceptibility generated by Eq. (2.37a) and (2.37b) is a
non-Lorentzian shape, which is dif�cult to interpret by a simple frequency shift and a
linewidth broadening. In the weak coupling limit (g � � ), it is a good approximation to
evaluate these modi�cations at the original resonance frequency! m. Typically, the me-
chanical damping rate is far slower than the cavity damping rate (
 e� � � ). This allows
us to neglect the dependence on! and treat the modi�cations as constants with values of
�! m(! m) and
 opt (! m) over the range of the mechanical linewidth
 e� . This assumption
has been found to be mostly accurate for high-Q mechanical resonators in various experi-
ments [72, 90]. Therefore, in the following discussions, we will take these assumptions.
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2.2.1.1 Optical Spring Effects

When! = ! m, the mechanical frequency shift induced by the light �eld reads:

�! m = g2

�
� � ! m

� 2=4 + (� � ! m)2 +
� + ! m

� 2=4 + (� + ! m)2

�
: (2.38)

In the Doppler regime� � ! m, this reduces to

�! m(�) j � � ! m
= g2 2�

� 2=4 + � 2
: (2.39)

This implies that the optomechanical interaction softens the mechanical spring for a red-
detuned (� < 0) laser and hardens the spring for a blue-detuned (� > 0) laser.

In the resolved-sideband regime (� � ! m), when the drive is at either of the two
sidebands(� = � ! m), the mechanical frequency shift is

�! m(� = � ! m)j � � ! m
= � g2

�
1

2! m

�
: (2.40)

If g � � � ! m, this frequency shift is negligible.

2.2.1.2 Optomechanical Damping Rate

The optomechanics-induced damping rate is


 opt = ncavg2
0

�
�

� 2=4 + (� + ! m)2 �
�

� 2=4 + (� � ! m)2

�
: (2.41)

The sign of this damping rate can be either positive or negative. Therefore, we can use the
light of different detunings to either cool or amplify the mechanical motion.

In the resolved-sideband regime, for a red detuned laser (� = � ! m), the induced
damping rate is


 opt (� = � ! m)j � � ! m = + ncavg2
0

4
�

: (2.42)

The interaction increases the mechanical damping rate. This can be exploited to cool the
motion of the mechanical oscillator as discussed in Sec. 2.2.2.

Similarly, for a blue detuned laser (� = + ! m), the induced damping rate is given by


 opt (� = + ! m)j � � ! m = � ncavg2
0

4
�

: (2.43)

The interaction decreases the mechanical damping rate. In this scenario, the total ef-
fective mechanical damping rate
 e� = 
 m + 
 opt can even become negative. This net
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anti-damping effect in the mechanical system results in parametric ampli�cation, which is
similar to a laser surpassing threshold [91].

As you can see, the light acts as a control knob to adjust the frequency and damping
rate of the coupled mechanical resonator through optomechanical interaction.

2.2.2 Optomechanical Cooling

To operate the optomechanical system in the quantum realm, both the mechanical oscilla-
tor and the optical cavity should be prepared close to their quantum ground states. The av-
erage thermal occupancy can be calculated using the formulanth = 1=(exp[~!=k BT]� 1).
Optical light (visible to infrared) is near its ground state even at room temperature (300 K).
However, for most mechanical resonators, even at a typical dilution fridge temperature
of 10-20 mK, it is often dif�cult to passively cool them to their ground state. Some re-
searchers overcome this hurdle by designing their mechanical frequencies in the GHz
range [51, 59, 61, 75, 92]. Active cooling approaches allow for preparing mechanical
ground states in a broader range of mechanics.

A red-detuned optical input can broaden the mechanical resonance (see Sec. 6.3.2.2).
This broadening further removes the energy of the oscillator, which is the so-called op-
tomechanical sideband cooling effect. Intuitively, this cooling utilizes cavity resonance to
enhance the phonon absorption process. Sideband cooling has been implemented in vari-
ous types of optomechanical systems [18, 51, 81–84]. In this section, I will brie�y discuss
the theoretical description of this cooling effect in both classical and quantum pictures.

In the classical theory, a mechanical resonator with linewidth
 m coupled to a thermal
reservoir of temperatureTbath has a mean phonon number

ninit =
kBTbath

~! m
: (2.44)

The optical damping rate reduces the mechanical mode mean occupancy number to

nf =
kBTbath

~(! m + ! opt )

 m


 m + 
 opt
; (2.45)

wherenf is the �nal phonon number after cooling. This classical interpretation is valid
till the zero-point �uctuation of the radiation pressure force starts to set the bound of the
achievable mean occupancy number.

By introducing quantum �uctuations in the calculation, some corresponding quantum
effects appear in the sideband cooling effect. This approach is crucial in the case of cool-
ing the mechanical mode to the quantum ground state, which has been demonstrated in
several proposals and experiments [51, 52, 54, 58, 83, 84, 93–96]. In the following, we
will restrict our discussion to the weak-coupling regimeg � � , where we could use the
aforementioned perturbative result in Sec. 2.2.1.
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Input photons can be scattered either downwards or upwards in the frequency domain.
To look into this, we can decompose the interaction Hamiltonian Eq. (2.29) into two parts:

Stokes scattering:� ~g
�

âyb̂y + âb̂
�

; (2.46a)

anti-Stokes scattering:� ~g
�

âyb̂+ âb̂y
�

: (2.46b)

â represents� â to simplify the writing here and in all following content unless otherwise
speci�ed. In the former process, one input photon converts into one cavity photon and one
phonon. While in the latter, one input photon absorbs one phonon to produce one cavity
photon.

Clearly, the anti-Stokes scattering is relevant for cooling as it removes phonons from
the oscillator. The presence of the optical cavity makes the system prefer one scattering
process over another. Typically, for a red-detuned input (� < 0), the anti-Stokes scat-
tering process is enhanced over the Stokes scattering process. As a result, the input laser
effectively cools the oscillator. In the resolved-sideband regime, the scattering process can
be interpreted in a rather simple picture, which will be covered in Sec. 2.3.

The net downward rate is given by


 opt = A � � A+ ; (2.47)

whereA � andA+ are downward transitions and upwards transitions in the mechanical
state, respectively. Thus, the dynamics of the mean phonon number is [44]

_n = ( n + 1)
�
A+ + A+

th

�
� n

�
A � + A �

th

�
; (2.48)

whereA+
th = nm;th 
 m andA �

th = ( nm;th + 1) 
 m are the extra transition rates due to the
thermal reservoir ofnm;th coupled to the oscillator. The �nal equilibrium phonon number
nf can be solved as

nf =
A+ + nm;th 
 m


 opt + 
 m
; (2.49)

whereA � can be evaluated by Fermi's golden rule. Let's de�ne the quantum noise spec-
trum as the following

SF F (! ) =
Z + 1

�1
dtei!t hF̂ (t)F̂ (0)i ; (2.50)

which is the Fourier component of the autocorrelation of the radiation pressure force as
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F̂ = ~Gâyâ. The transition rates can be reexpressed as

A � =
x2

ZPF

~2
SF F (! = � ! m) : (2.51)

The force spectrum of a driven cavity is given by

SF F (! ) =
g~2

xZPF

�
� 2=4 + (� + ! )2

: (2.52)

Let us �rst consider the relatively simple result in an optimal case in which the sys-
tem is decoupled from the thermal reservoir,i.e., 
 m = 0. The �nal phonon number in
Eq. (2.49), which is the minimal phonon number that this cooling effect could achieve, is
reduced to

nmin =
A+


 opt
=

A+

A � � A+
: (2.53)

Combining Eq. (2.51) to (2.53), we obtain the minimal phonon number for a given me-
chanical mode as

nmin =
�

A �

A+
� 1

� � 1

=

 
(�= 2)2 + (� � ! m)2

(�= 2)2 + (� + ! m)2 � 1

! � 1

: (2.54)

Note that, it is possible to cool the oscillator even in the sideband-unresolved regime (� &
! m).

In the resolved-sideband regime (� � ! m), the minimal phonon number can be mini-
mized at red-detuning (� = � ! m), given by

nmin =
�

�
4! m

� 2

� 1: (2.55)

In principle, this makes ground-state cooling permitted.
In the opposite regime (� � ! m), the limitation of the minimal phonon occupancy

stems from the shot noise of the radiation pressure exerting on the oscillator, given by

nmin =
�

4! m
� 1: (2.56)

When considering the coupling to a thermal reservoir, the �nal phonon number Eq. (2.49)
can be expressed as the outcome of the coupling between two baths with average occupa-

20



tions ofnmin andnm;th with coupling rates of
 opt and
 m, respectively. That is,

nf =

 opt nmin + 
 mnm;th


 opt + 
 m
: (2.57)

The �nal phonon number is a result of the interaction of the system with two thermal en-
vironments, which leads to energy exchanges. This equation can represent a simple model
of the interaction between a quantum system and a thermal environment, and it highlights
the importance of understanding the coupling between the system and its environment for
accurate predictions of its thermal behavior.

The result shown in Eq. (2.57) is indeed a quantum description of the optomechanical
backaction cooling [96]. We note that the discussion above has ignored the existence of
thermal occupancy in the optical cavity. This is clearly a good approximation for visible
or infrared light due to their high frequency. However, for microwave cavities, the cavity
occupation deviates from zero by a nonnegligible occupationncav;th . As a result, in the
resolved-sideband regime, the �nal phonon number is modi�ed to

nf = nm;th

 m


 e�
+ ncav;th +

� 2

16! 2
m

: (2.58)

Note thatnf > n cav;th . This indicates the �nal phonon number is jointly limited by thermal
�uctuations of the input �eld and the mechanical resonator [44].

2.3 Optomechanics in the Resolved-Sideband Regime

In this section, I will mainly discuss the results of quantum optomechanics in the resolved-
sideband regime (� � ! m), as this is relevant to the experiment in this thesis. In this
regime, the mechanical motion is much faster than the optical decoherence rate, so the
cavity could be approximated to be lossless during mechanical oscillations. Additionally,
the mechanical sidebands are well separated from the optical cavity resonance in the fre-
quency domain. In this regime (and in the rotating wave approximation (RWA)), choosing
the right optical input detuning allows us to select the desired optomechanical scattering
process.

Optomechanical devices in the resolved-sideband regime turn out to be useful in vari-
ous applications. One of them is developing sensitive detectors for small forces, displace-
ments, and masses. For example, if the shift of the mechanical frequency due to the signal
is much smaller than the width of the optical resonance, such a modulation can only be
detected in the resolved-sideband regime. Moreover, these optomechanical devices have
been used to explore quantum behaviors of mechanical systems by selecting desired scat-
tering processes, such as creating nonclassical mechanical states [61, 62, 92], two-mode
squeezed states [75], or even entangled states between multiple massive mechanical res-
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onators [59, 97]. They are important for building acoustic quantum networks and quantum
memories [11, 15].

In Sec. 2.2.2, we brie�y mentioned the decomposition of the linearized interaction
Hamiltonian Eq. (2.29) into the Stokes and the anti-Stokes scattering terms. In the resolved-
sideband regime, for a red-detuned input (� � � ! m), we have two harmonic oscillators
of nearly equal frequency (in this rotating frame at! L ) as shown in Eq. (2.27). The term
that describes the interchange of quanta between two oscillators is the anti-Stokes scatter-
ing term given in Eq. (2.46b). It represents a process of removing a phonon and creating a
photon orvice versa. The Stokes scattering process Eq. (2.46a) is omitted as the energy is
not “conserved” in this process, or in other words because they are strongly off-resonant.
Keeping only the resonant term in a rotating frame is known as the rotating wave approxi-
mation (RWA). This is relevant for cooling as the phonon energy can be transferred into the
colder photon mode. It is also referred to as a “beam-splitter” interaction or a “state-swap”
interaction in quantum optics.

In contrast, for a blue-detuned input (� � + ! m), we only keep the Stokes scattering
term Eq. (2.46a). This term represents a process of creating/annihilating a photon-phonon
pair, known as a “two-mode squeezing” interaction.

The discussion in this section revolves around these two crucial processes, which have
been incorporated into the experiment in this thesis to read out or conditionally prepare
the mechanical state.

2.3.1 Optical Output Spectrum

The output optical �eldâout of the optomechanical cavity has a spectrumSây
out âout

that
relates to mechanical spectrumSx̂ x̂ . Using the input-output formalism in Eq. (2.31a)
and (2.31b), we can construct the output spectrum of the light [44, 98]. In the resolved-
sideband regime and low-temperature limit (kB T � ~! cav), the linearized coupled equa-
tions of motion can be simpli�ed as

� i! â[! ] =
�

i � �
�
2

�
â[! ] + i

g0
p

ncav

xZPF
x̂; (2.59a)

� i! b̂[! ] =
�

� i! m �

 e�

2

�
b̂[! ] +

p

 mb̂in [! ]: (2.59b)
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Note that noise correlations that are associated with the inputs of the system are given by
D

âin (t)ây
in (t0)

E
= � (t � t0) ; (2.60a)

D
ây

in (t)âin (t0)
E

= 0; (2.60b)
D

b̂in (t)b̂y
in (t0)

E
= ( nm;th + 1) ( t � t0) ; (2.60c)

D
b̂y

in (t)b̂in (t0)
E

= nm;th � (t � t0) : (2.60d)

Here we approximate that the optical �eld has zero thermal occupation, which is valid
even at room temperature for optical light. Therefore, by formal integrals, the output �eld
spectrum reads

Sây
out âout

(! ) = � exncav2�� (! ) + � exg2
0ncav=x2

ZPF j� cav(! + �) j2 Sx̂ x̂ (! ); (2.61)

where the �rst term corresponds to the optical input �eld and the second term corresponds
to the optical �eld scattered by the mechanical motion through the optomechanical cou-
pling. � cav(! ) is the bare optical cavity susceptibility Eq. (2.13). The spectrum of the
mechanical position̂x can be rewritten as

Sx̂ x̂ (! ) = x2
ZPF [Sb̂y b̂(! ) + Sb̂̂by (! )] : (2.62)

Sb̂y b̂(! ) is enhanced around! = + ! m, andSb̂̂by is enhanced around! = � ! m, corre-
sponding to the anti-Stokes and Stokes scattering processes, respectively, which produce
the output �eld with the mechanical susceptibility� m(! ) having an effective linewidth

 e� . This is explicitly seen through the oscillator's Langevin equation 2.59b [99, 100], as
shown in the result of the formal integral:

Sb̂y b̂(! ) =
nm 
 e�

(
 e� =2)2 + ( ! � ! m)2 ; (2.63a)

Sb̂̂by (! ) =
(nm + 1) 
 e�

(
 e� =2)2 + ( � ! � ! m)2 : (2.63b)

In summary, the optical output spectrum consists of the bare optical input and two
frequency-resolved mechanical sidebands with linewidth
 e� at either the blue-shifted
(! = + ! m) or the red-shifted (! = � ! m) sideband, which corresponds to the anti-Stokes
and the Stokes scattering processes, respectively. If the optical input is red-detuned from
the optical cavity! cav by one mechanical resonance,i.e., ! L = ! cav � ! m, its blue-shifted
sideband (the anti-Stokes scattering process) is signi�cantly enhanced by the presence of
the cavity resonance. Similarly, the red-shifted sideband (the Stokes scattering process) of
a blue-detuned optical input! L = ! cav + ! m is also enhanced.

23



2.3.2 Quantum Sideband Asymmetry

The phenomenon known as quantum sideband asymmetry occurs when a quantum system
interacts with an electromagnetic �eld. In the �eld of optomechanics, this term refers to
the discrepancy between the Stokes and the anti-Stokes scattering processes that occur
when a weak optical �eld drives a mechanical resonator. This asymmetry arises due to the
dissimilarity between the processes of absorption and emission of a quantum by a quantum
system.

The output spectrum in Eq. (2.61) has two Lorentzians at� ! m if the input laser is
at optical resonance (� = 0 ). Although the two Lorentzians share the same shape, their
amplitudes differ. As shown in Eq. (2.63a) and (2.63b), the red-detuned sideband is pro-
portional tonm, the blue-detuned sideband is proportional tonm + 1, and the difference
is precisely one phonon, which originates from the non-zero commutator of the bosonic
creation operator̂band the annihilation operatorb̂y, i.e., [̂by; b̂] = 1.

This asymmetry is most commonly characterized by the noise spectrum through het-
erodyne measurements. [51, 58, 70, 101, 102]. The ratio of the sideband asymmetry
changes as a function of the mechanical phonon number. This asymmetry ratio is rendered
progressively smaller by an increasing phonon number, until it becomes negligible when
the phonon number is suf�ciently large (nm � 1). This asymmetry also provides a tool to
determine the temperature of the mechanical mode via calibrating the phonon number to
the single quantum imbalance, which is known as the sideband quantum thermometer.

In the resolved-sideband regime, one way to measure the quantum sideband asymmetry
is by �rst using a blue-detuned (� = + ! m) and then a red-detuned (� = � ! m) input
laser. When the input laser is blue-detuned, as discussed in Sec. 2.3, the scattered light is
dominated by the Stokes scattering process, whose rate is proportional toĥb̂byi = nm + 1.
In contrast, when the input laser is red-detuned, the dominant anti-Stokes scattering rate
is proportional toĥbyb̂i = nm. Notice that this discussion is within the weak coupling
regime, where we have omitted the dynamical backaction effects discussed in Sec. 2.2.
The result including the dynamical backactions is covered in Sec. 6.3.2.

2.4 Figure of Merit: Quantum Optomechanical Device

Quantum optomechanical systems are available in different platforms, which include vari-
ations in the frequency, size, and geometry of the mechanical resonator, cavity frequency
and geometry, coupling mechanism, and more. Despite these differences, researchers aim
to identify universal parameters that can be used to evaluate the performance of the sys-
tem. The manipulation and measurement of the mechanical resonator in the fully quantum
regime are enabled by certain parameters, and even slight changes to these parameters
can lead to a signi�cant shift in the system's performance. This section will explore sev-
eral �gures of merit for optomechanical systems and will discuss the unique phenomena
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and applications associated with special regimes. In some regimes, the distinct quantum
advantages of optomechanical systems cannot be explained by any classical theories.

2.4.1 Cooperativity

The narrative of quantum control involves a struggle between the coupling rate and overall
dissipation. The dissipation in the system means the loss of important quantum features.
In linear optomechanical systems, cooperativity is a measure of the relationship between
the energy exchange rate and the rates at which each subsystem loses energy. That is

C = 4g2=
 m �: (2.64)

This de�nition is similar to the Purcell factor in atomic physics, which evaluates the cou-
pling strength between cavity �elds and atomic assemblies.

In the resolved-sideband regime, it is directly related to the maximum cooling rate
attained in the red-detuned sideband (� = � ! m) as


 opt j � � ! m = 4ncav
g2

0

�
=

4g2

�
= 
 mC: (2.65)

Higher cooperativity in linear optomechanics would indicate the ability to cool closer to
the quantum ground state and the preparation of mechanical quantum states with high
�delity [103, 104].

In optomechanical systems, electromagnetically induced transparency refers to the
phenomenon of absorption cancellation in the presence of an optical �eld. When one laser
(the “control” laster) is placed at the red-detuned sideband (� = � ! m), the transmission
of a “probe” beam is given by

jR pj2 =

�
�
�
�

4ncavg2
0

4ncavg2
0 + 
 m � � 2i (! � ! m) �

�
�
�
�

2

: (2.66)

The �eld at the cavity resonance (! = + ! m) gives

jR pj2 =
�

C
C+ 1

� 2

; (2.67)

from which we can see thatC > 1 is necessary to change the transmission over 50%.
Regarding the �nal phonon number presented in Eq. (2.49), it is worth mentioning

that in the resolved-sideband regime and for the limit where
 opt � 
 m, the reduction in
thermal occupation can be described using quantum cooperativity as

lim

 opt =
 m !1

nf = nmin +

 m


 opt
nm;th = nmin +

1
Cqu

; (2.68)
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whereCqu = C=nm;th is the quantum cooperativity. If quantum cooperativityCqu > 1, the
state transfer rate between light and mechanics is faster than the mechanical decoherence
rate.

2.4.1.1 Single-Photon Strong Cooperativity

A more fundamental parameter that is independent of the drive laser power is the single-
photon cooperativity, given by [44]

C0 =
4g2

0

�
 m
: (2.69)

The system's loss is compared to the strength of the unitary interaction between a
single photon and phonon, determining this ratio. When this ratio exceeds 1, known as the
single-photon strong cooperativity regime (C0 > 1), the mechanical resonator can respond
to a single photon before it dissipates. This way, the mechanical resonator can access the
discrete nature of photons, which is a fundamental quantum aspect of light.

It is clear to see from Eq. (2.69) that achieving the single-photon strong cooperativity
requires a strong coupling and small losses. Let's take a Fabry-P�erot cavity with a movable
end mirror (shown in Fig. 2.1) as an example to show this more explicitly. Eq. (2.69) can
be reexpressed as

C0 =
�

! cavxZPF

L cav

� 2 4
�
 m

=
2~
�c

QmF
mL cav

�
! cav

! m

� 2

: (2.70)

Here,Qm = ! m=
 m is the mechanical quality factor. It demands engineering an ultra-large
Qm andF to overcome the smallness of the Plank constant~. Eq. (2.69) also presents
challenges in building a macroscopic quantum optomechanical system, as the cooperativ-
ity decreases for large mechanical mass and a long cavity.

Achieving single-photon strong cooperativity is a milestone goal in the optomechanical
�eld. If one could reach this limit, one could take advantage of the coupling at the single-
photon level to obtain a range of interesting phenomena, including non-classical states of
light or motion [62, 92, 105–108], and quantum information processing.

In the context of measurements at the standard quantum limit (SQL), the ratio of quan-
tum backaction to thermal force noise yields

SF F (! m)
Sth

F F (! m)
= C0

ncav

nth ;m
=

16� � Ping2
0! m

� 2
 m! cavkBT
1

1 + 4! 2
m=� 2

: (2.71)

Having this ratio larger than unity is important for optomechanical experiments to observe
the effects of radiation-pressure shot noise on the mechanical oscillator, and to further
demonstrate detection sensitivity at the standard quantum limit [109]. LargeC0 makes
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these experiments feasible even with moderate optical input power.
Furthermore, the optical spring effect shifts the mechanical frequency, as demonstrated

by Eq. (2.40). If the single-photon cooperativity exceeds the resolved-sideband ratio,
C0 > ! m=� , it becomes possible to resolve a single photon by detecting the mechani-
cal frequency. Moreover, it is feasible to resolve the mechanical phonon number using
electromagnetic signals, as described in [62].

This is further evidence that, in the single-photon strong cooperativity regime, the
impact of one average intracavity photon on the mechanical resonator is adequate to facil-
itate cooling [104], prepare mechanical systems in quantum superposition states [62], and
achieve critical quantum �uctuations (a critical regime characterized by nonlinear inter-
actions between optical and mechanical �uctuations) [110, 111] and photon antibunching
in optomechanical systems [111]. Investigating the classical-to-quantum transition is of
particular interest in the single-photon strong coupling regime with mechanical resonators
of large mass and long coherence time, as discussed in [9].

In current experiments, optomechanical implementations would require signi�cant im-
provements ing0, mechanical quality factorQm,or optical �nesseF to approach single-
photon strong coupling. Single-photon strong cooperativity has been achieved by coupling
mechanical resonators to microwave qubits [15, 60, 61, 103, 104, 112–114]. Recently, this
regime was achieved in optomechanical systems with optical photons [115, 116], as well
as with microwave photons [113].

2.4.2 Strong Coupling

The strong coupling regime refers to the regime in whichg=� � 1. In this regime,
the optical mode and the mechanical mode mix to form two hybridized modes whose
splitting is2g. The exact result is described by solving the linearized equations of motion,
Eq. (2.31a) and (2.31b). In the red-detuned regime (� � � ! m), by applying the RWA on
Eq. (2.31a) and (2.31b), the simpli�ed linearized coupled equations of motion are:

 
h_̂ai

h_̂bi

!

= � i
�

� � � i �
2 � g

� g ! m � i 
 m
2

�  
ĥai
ĥbi

!

: (2.72)

The frequencies of the hybridized modes are

! � = ! m +
�
2

� i
� + 
 m

4
�

s

g2 +
�

� + i (
 m � � ) =2
2

� 2

; (2.73)
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where� = � � � ! m. When the drive is exactly at the red-detuned sideband (� = � ! m),
we have

! � = ! m � i
�
4

�

r

g2 �
� �

4

� 2
: (2.74)

The transition threshold for the square root to switch from purely imaginary to purely real
is g = �= 4. Once this threshold is surpassed, two well-resolved peaks appear, indicating
the coupling of the mechanical mode and optical mode in the strong-coupling regime
[44]. Such a coupling is a prerequisite for various quantum applications, including high-
�delity quantum-state transfer. The photon statistics of an optomechanical system in the
strong-coupling regime also exhibit intriguing antibunching behavior and other types of
correlation [117].

2.4.2.1 Single Photon Strong Coupling

The �ve dimensionless combinations listed below can encompass all the parameters of a
standard optomechanical setup:

�
! m

;
! m


 m
;

�
! m

;
g
�

;
g0

�
: (2.75)

The �rst four parameters are unrelated to the value of Planck's constant~. Only the ratio
g0=� is affected by it, and it's considered a ”quantumness” parameter [118] or referred to
as the ”granularity parameter” [119]. To illustrate, one can keep the �rst four parameters
�xed and increaseg0=� , which is equivalent to increasing the value of Planck's constant.
Thus, asg0=� increases, we can observe more quantum signatures in the experiment. The
regime in whichg0=� > 1 is referred to as the single-photon strong coupling regime.
Some features predicted for larger values ofg0=� differ qualitatively from classical pre-
dictions [120]. Additionally, it also has been demonstrated that probing mechanical energy
quantization necessitatesg0=� � 1 [62].

Another way to appreciate the single-photon strong coupling criteria is by comparing
the average displacement�x produced by a single photon with the zero-point �uctuation.
That is

�x
xZPF

= 2
g0

! m
: (2.76)

g0 > ! m is needed to resolve the displacement�x . It should be noted thatncav refers to the
average photon number inside the cavity. In order to truly observe this effect, the lifetime
of a single photon should be longer than the mechanical oscillation period (! m � � ).

In a similar manner, the ratio of momentum kick to momentum zero-point �uctuations,
also known as the Lamb-Dicke parameter, can be de�ned to express the uncertainty of
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momentum:

� Lamb-Dicke � �px ZPF =~ = �p= (2pZPF ) = g0=�: (2.77)

In both cases, the condition for strong coupling of single photons appears,i.e., g0 � � .

2.4.3 Photon Blockade Parameter

Another important parameter is the photon blockade parameter. A single photon can in-
duce a cavity frequency shift� ! cav due to its radiation pressure exerting on the mechanic
oscillator. This effect is captured by the effective photon-photon interaction mediated by
the mechanics

� ! cav =
g2

0

! m
: (2.78)

If the shift caused by a single photon is larger than the cavity linewidth� , then a second
photon is prevented from entering the cavity due to the resonance shift. This phenomenon
is referred to as photon blockade. Thus, the photon blockade parameter is de�ned as

D � g2
0=(! m � ): (2.79)

It is evident that you have single-photon strong couplingg0=� > 1 when you have strong
photon blockade parameterD > 1. The maximal (when the limit is not caused by a
shifted cavity resonance but the absorption of the �rst intracavity photon in the cavity
sideband) degree of suppression of two photons absorption process scales as(�=! m)2,
making sideband resolution an additional necessity for achieving single-photon blockade.

One of the predicted experimental observations of the optomechanically induced pho-
ton blockade is the strong antibunching in photon-photon correlations (g(2) (0) < 1) [121].
Further analysis has extended the study of photon-photon correlations to include the full
temporal evolution ofg(2) (t), Fano factors, as well as high-order moments of photon count-
ing statistics [122].

The nonlinear quantum optomechanical regime would be a signi�cant advancement
in manipulating mechanical resonators at the quantum level. Research has demonstrated
the possibility of preparing the mechanical resonator into states of non-Gaussian Wigner
densities or of non-Poissonian phonon distributions in this regime[118]. In addition, it has
been found that in this regime, the optomechanical system can produce mechanical states
with partially negative Wigner densities for given appropriate parameters [123].
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2.5 Relevant Optomechanical Regimes

The optomechanical system studied in this work is well-described by a single high-Q
optical mode unitarily coupled to a single high-Q mechanical mode. The input optical
power (� µW, corresponding toncav � 106) is suf�ciently large to apply the linearization
approximation mentioned in Eq. (2.29). Thus the linearized coupled dynamical equations
in Sec. 2.1.4 can well describe the system's evolution.

The mechanical mode has the frequency! m=2� � 315:3 MHz and linewidth
 m=2� �
3:12 kHz. The optical mode of the empty cavity has wavelength� cav � 1548:3 nm and
linewidth �= 2� � 47:2 MHz. Both resonators are cooled to� 20 mK. So the optical
mode is very close to its ground state, and the mechanical mode is thermal equilibrium
to a thermal state with a mean occupancynm;th � 1. The system satis�es the resolved-
sideband condition (! m � � ). The discussion about the sideband-resolved regime in
Sec. 2.3 is also relevant to this system.

The single-photon coupling strengthg0=2� � 4:6 kHz. The single-photon coopera-
tivity is C0 � 5:7 � 10� 4 � 1. The single-photon strong coupling parameterg0=! �
1:4 � 10� 5, which requiresP � 2:5 mW to achieve the strong coupling regime. Hence,
these non-trivial quantum effects cannot be accessed directly in this system.

The relevant equations derived in this chapter are mainly used in Chapter 6.
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“Facts are stubborn things, but
statistics are pliable.”

– Mark Twain

CHAPTER3
Quantum Statistics

In the universe outlined by Isaac Newton, it is usually understood that the past and fu-
ture are entirely determined by the present. In accordance with this deterministic princi-
ple, Pierre-Simon Laplace later introduced “Laplace's demon” in his 1814 publication,A
Philosophical Essay on Probabilities[124]. This hypothetical creature is a “vast intelli-
gence” that possesses knowledge of the complete physical state of the present universe at
one instance, and so can, in principle, learn its full history and future.1

One hundred years later, quantum mechanics upended this worldview. Like classical
mechanics, quantum theories tell you how the system evolves over time based on the in-
formation of the system at present. This evolution can be described by the Schrödinger
equation, which represents the state of the system as a complex-valued wave on the sys-
tem's con�guration space. Although this equation is deterministic, the laws of quantum
mechanics are usually formulated with additional rules that govern the behavior of sys-
tems when they are under observation or measurement. The most striking difference is
that measurement outcomes cannot be predicted with absolute certainty, even in principle.
The square modulus of the wave function was identi�ed as the probability density by Max
Born. This is the interpretation of quantum mechanics that is used by the overwhelming
majority of physicists. However, it is important to note that there are other interpretations
in which fundamental plays a different role or is even entirely absent. A recent review is
in Ref. [127].

In addition to the apparently fundamental uncertainty inherent to quantum mechanics,
it is also important to be able to describe situations in which “classical uncertainty” (i.e.,
the describer's ignorance about the quantum state in which the system was prepared) is in
presence. In this chapter, we discuss the theories which incorporate classical probability
into the quantum description and show theoretical results that are used in later chapters.

1The status of determinism in Newtonian mechanics is actually more subtle. See examples in Refs. [125,
126].
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3.1 Photon Statistics

In quantum mechanics, the idea of wave-particle duality suggests that any quantum entity
or particle can be characterized as either a wave or a particle, highlighting the limitation of
classical concepts such as `wave' or `particle' in completely accounting for the behavior
of objects at the quantum scale. As Einstein wrote [128]:

It seems as though we must use sometimes the one theory and sometimes the
other, while at times we may use either. We are faced with a new kind of
dif�culty. We have two contradictory pictures of reality; separately neither of
them fully explains the phenomena of light, but together they do.

For optics, these discrete particles are referred to as photons. Photon counting statistics
can fully reveal information about the quantum state of the light, which also exhibits a
wave-like feature. As described below, certain statistics can distinguish quantum features
from those obtained by any classical theory.

3.1.1 Photon Counting Distribution

Assume the set of eigenstates of a system isf  i g. A general “mixed state” of this system
can be represented by a density matrix�̂ in the basis off  i g as

�̂ =
X

i

� i j i ih i j; (3.1)

where� i is the probability (in the classical sense) that the system is in the quantum state
j i i . The probability to �ndn photons in a measurement in a measurement of a system
characterized bŷ� is

Pn = Tr �̂ jnihnj =
X

i

� i jh i jnij 2: (3.2)

For a harmonic oscillator, the eigenstate basis is the Fock state basis or number state
basis. It turns out that this basis is useful for evaluating the photon count statistics as we
havePn = � n in Eq. (3.2).

A thermal state is a mixed state, and its density matrix can be expressed in the Fock
state basis as [129]

�̂ th =
1X

n=0

nn
th

(1 + nth )n+1
jnihnj; (3.3)

wherenth = hni =
P

n � nn is the expectation occupancy of the thermal state. The
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probability follows the Bose-Einstein distribution. The variance of a thermal state is

(� n)2
th = n2

th + nth : (3.4)

A coherent state is a pure state and can be expressed as

j� i = e� 1
2 j � j2

1X

n=0

� 2

p
n!

jni : (3.5)

Its photon number distribution is given by

Pj � i (n) = exp
�
� j � j2

�
�

j� j2n

n!
; (3.6)

which is a Poisson distribution. The variance of a coherent state is

(� n)2
j� i = j� j2: (3.7)

In practice, classical measurement inef�ciency impacts the information that can be
extracted about the photon number distribution. Assuming the detection ef�ciency is such
that the probability of measuring a single photon when the state of the system isj1i is � ,
then the probabilityP (n)

m of observingm photons of the statejni is given by [129]

P (n)
m = Cm

n � m (1 � � )n� m : (3.8)

This is Bernoulli's distribution form successful events inn trials in which each individual
event has identical independent success probability� . Thus, the measured photon counting
distribution reads

Pm =
1X

n= m

Cm
n � m (1 � � )n� m � n : (3.9)

Clearly, in the case� = 1, we havePn = � n , i.e., we can obtain the� i from the measured
photon counting probability distribution. For� < 1, if the density matrix element truncates
atn0, then� i can be inversely solved exactly from measurements ofPm .

It is also worth pointing out that this probability could be reexpressed by theP-function
(discussed in Sec. 3.4.1.1) as

Pm =
Z

d2�
1X

n= m

Cm
n P (�; � � )

j� j2n

n!
e�j � j2 � m (1 � � )n� m : (3.10)
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This can be further simpli�ed by changingn to l + m, giving

Pm =
Z

d2�P (�; � � )
(� j� j2)m

m!
e� � j � j2 : (3.11)

Therefore, it is also possible to invert Eq. (3.11) to derive theP-function. Detailed discus-
sion on quasi-probability functions (such as theP-function) will be provided in Sec. 3.4.

3.1.2 Photon Correlations and Coherences

In statistics, correlation or dependence refers to any statistical relationship between two
random variables or bivariate data, regardless of whether this relationship is causal or
not. Photon correlations make it possible to unravel the wave-like behavior of light from
particle-like measurements. Nonclassical correlations (discussed below) are explicit ex-
amples of the quantum nature of light.

Formally, the correlation can be de�ned as the expectation value of the product of vari-
ableshABCD i . In quantum mechanics,A, B , C, andD are notc-numbers but operators,
and in general do not commute. In the optical domain, detectors usually measure the local
optical �eld in an absorptive way by the photoelectric effect or photothermal effect. There-
fore, only annihilation operatorŝa contribute to the measurement probability. In terms of
Fermi's golden rule, the transition rate satis�es

� i ! f / jh f jH int j i ij 2 ; (3.12)

whereji i andjf i are initial and �nal states, respectively, and the completeness relation
gives

P
f jf ihf j = 1. Hence, the transition probability of absorptively measuring a photon

from the initial state of the light �eldji i at timet and positionr is proportional to

p1(r ; t) = jhf jâ(r ; t)ji ij 2 = Tr[ �̂ âyâ] = ĥay(r ; t)â(r ; t)i : (3.13)

In general, the initial state is not a pure state, and so must be described by a density matrix
�̂ .

Therefore, we de�ne the �rst-order correlation function of the �eld̂a by normally
ordered creation and annihilation operators as the following

G(1) (r 1; r 2; t1; t2) = ĥay(r 1; t1)â(r 2; t2)i : (3.14)

For a statistically stationary optical state and identical detectors, the correlation functions
G(1) (r 1; r 2; t1; t2) only depends on the time difference� = t2 � t1 as shown below:

G(1) (r 1; r 2; t1; t2) � G(1) (� ) : (3.15)
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Photon detectors only measure the individual photon arrival time and the photon count
rates. In this case, the �rst-order correlation reduces to the number operator up to an
overall measurement ef�ciency prefactor� as

G(1) (0) � � ĥayâi : (3.16)

Now consider a joint measurement at two different timest1 and t2. Similar to the
discussion above, the joint probability of two-photon coincidence measurement is thus
governed by the second-order correlation function, which is de�ned as

G(2) (r 1; r 2; t1; t2) = ĥay(r 1; t1)ây(r 2; t2)â(r 2; t2)â(r 1; t1)i ; (3.17)

where not only the creation and annihilation operators are normally ordered but also are
time-ordered ast2 � t1. This is apparent by considering the �nal state is a result of a series
of measurements that strictly obey time ordering.

This de�nition can be generalized to thenth-order correlation function as

G(n) (r 1; r 2; � � � ; r n ; t1; t2; � � � ; tn )

= ĥay(r 1; t1)ây(r 2; t2) � � � ây(r n ; tn )â(r n ; tn ) � � � â(r 2; t2)â(r 1; t1)i : (3.18)

Notice that in the de�nitions above, we always have equal numbers of creation and annihi-
lation operators. This is because for typical measurements, only such Hermitian operators
contribute to the measurement results.

Coherences are correlation functions that are normalized to remove the experiment-
dependent measurement ef�ciency� . We de�ne the second-order coherence as

g(2) (r1; r2; t1; t2) =
ĥay(r 1; t1)ây(r 2; t2)â(r 2; t2)â(r 1; t1)i

ĥay(r 1; t1)â(r 1; t1)ihây(r 2; t2)â(r 2; t2)i
: (3.19)

For a stationary state measured by identical detectors, the coherence reads

g(2) (� ) =
ĥay(t)ây(t + � )â(t + � )â(t)i

ĥayâi 2
: (3.20)

In this case, the �rst-order coherence is alwaysg(1) = 1. As discussed in Sec. 3.4.1.1,
the expectation value of normally ordered operators is associated with theP-function of
the state, which is a correspondence between classical and quantum coherence theory. We
thus can calculate the coherence of the state by using its correspondingP-function.

Similar to the high-order correlation functions shown in Eq. (3.18), the second-order
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coherence shown in Eq. (3.20) can be extended to high-order coherences as

g(n)(� ) =
ĥay(t) � � � ây(t + � � � � n� 1)â(t + � � � � n� 1) � � � â(t)i

ĥayâi n
; (3.21)

where the elements of� = f � 1; � 2; � � � ; � n� 1g are the delay times between each two con-
secutive counts. All delaying times are nonnegative (i.e., 8 � i � 0) to satisfy the time
ordering requirement.

3.1.3 Bunching and Anti-Bunching

Literally, bunching is the tendency of photons (or other particles) to distribute themselves
preferentially in bunches rather than randomly. Oppositely, anti-bunching photons tend
to be more evenly spread than for a random sequence. Before we reach that part, I will
discuss the de�nition of the Poisson, sub-Poisson and super-Poisson distributions. And
eventually, I will discuss the confusing relations between these concepts.

3.1.3.1 Poisson, Sub-Poisson and Super-Poisson Distributions

The photon counting problem is part of the general counting problem, which has its roots
in queue theory [130]. Let's �rst quickly review what a Poisson distribution is.

The validity of the Poisson distribution is restricted to the following assumptions:

IndependenceAll events are independent;

Identity The average rate at which events occur is constant;

Exclusion Two events cannot occur at exactly the same instant.

Assume the average rate of photons is� . In a unit of timedt, the probability of �nding a
photon in that time interval isdt� . Based on the independence assumption, the probability
of �nding m photons in a time intervalT is given by

P� t= T (m) = lim
dt ! 0

�
T=dt

m

�
(1 � dt� )T=dt (dt� )m =

(�T )me� �T

m!
: (3.22)

In a special case,lim �T ! 0, the Poisson distribution reduces into the Binomial distribu-
tion. In other words, the Poisson distribution is the continuous limit of identical indepen-
dent binomial distributions (i.i.d). The Poisson distribution generating function is given
by

� X (s) = e� �T (1� s) (3.23)

and the probability of the separation time between two consecutive photonst satis�es
� e� �t .
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Particularly, the expectation value and the variance of the photon number in a time
intervalT are identical, given by

E(n) = Var( n) = �T: (3.24)

Along this spirit, the super-Poisson and the sub-Poisson distributions are de�ned as distri-
butions satisfying the following conditions [131]:

Super-Poisson:Var(n) > E(n); (3.25a)

Sub-Poisson:Var(n) < E(n): (3.25b)

3.1.3.2 The Second-Order Coherences of Bunching and Anti-Bunching

In Sec. 3.1.3. we brie�y mentioned the conceptual de�nition of bunching and anti-bunching
effects. In this section, we show rigorous mathematical restrictions on the second-order
coherencesg(2) (t) for bunching, anti-bunching and random photons to clarify what we
mean [131]:

Bunching: g(2) (� 1) > g (2) (� 2) 8 � 1 < � 2; � 1; � 2 2 [0; T]

Anti-bunching: g(2) (� 1) < g (2) (� 2) 8 � 1 < � 2; � 1; � 2 2 [0; T]

Random: g(2) (� 1) = g(2) (� 2) 8 � 1 < � 2; � 1; � 2 2 [0; T]

An important message to address is that these restrictions ong(2) (t) are speci�ed within
a time intervalT. In other words, it describes a local monotonicity rather than a global
behavior.

3.1.3.3 Relations between Super-/Sub-Poisson Distributions and Bunching/Anti-Bunching
Effects

One might ask about relations between sub-Poisson, super-Poisson & Poisson distribution
and bunching & anti-bunching effects. In this section, we clarify that these de�nitions are
not identical. However, in certain circumstances, they might fall into the same category.
Perhaps, the confusion among these concepts originates from this coincidence as described
in the following quote [131]:

“Perhaps because the effects often tend to occur together, there has been a
widespread tendency in the literature to mix them up or even to regard them
as one and the same.”

The relation between the sub-/super-Poisson distribution and the anti-bunching/bunching
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effect is subtle. For brevity, we introduce the relative coherence function� (� ):

� (� ) � g(2) (� ) � 1: (3.26)

For a stationary state which satis�esR� 1 � � c (R is the count rate,� c is the decoherence
time (for t � � c, � (t) = 0 )), the probabilityP� t= T (m) that the detector registersm
photons in the time intervalT is readily given in Refs. [131, 132]. From this, the variance
of the measured photon number is [131]



(� n)2

�
� h ni = hni 2 1

T2

Z T

� T
d� (T � j � j)� (� ): (3.27)

SinceT � j � j � 0, the sign of� (� ) is crucial in determining whether the variance exceeds
the mean or not,i.e., whether photon-counting statistics are super- or sub-Poissonian. For a
negatively correlated state(� (� ) < 0; 8 � < T ), its counting statistics is sub-Poissonian.
Similar steps can relate a positively correlated state(� (� ) > 0; 8 � < T ) to super-
Poissonian photon-counting statistics. It is worth addressing that only the integral, not
the sign of� of a given delay, determines whether photon-counting statistics are super- or
sub-Poissonian.

Especially for an in�nitesimal time intervalT ! 0, we have the following relations
which seem to be familiar:

Super-Poisson:g(2) (0) > 1; (3.28a)

Sub-Poisson:g(2) (0) < 1; (3.28b)

Poisson:g(2) (0) = 1 : (3.28c)

If g(2) (� ) always monotonically approaches one, which is true for certain states, we can
treat super-Poissonian (sub-Poissonian) photon statistics and the bunching (anti-bunching)
phenomena of photons as the same manifestation of the state. Confusion among the de�-
nitions of these phenomena is previously caused by the result of this special case.

Regrettably, a direct and unequivocal relationship between Poissonian statistics and the
bunching effect does not exist. A counter-example presented in Ref. [131] demonstrates
a state of sub-Poissonian photon-counting statistics while the photons themselves exhibit
bunching over time. If the �eld is in the superposition of Fock states of two modes,jn! 1 i +

jn! 2 i , wheren! 1 = n! 2 =
1
2

n! , then we �nd its relative correlation is given by

� (� ) =
1
2

cos (! 1 � ! 2) � � 1=n! ; (3.29)
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and from Eq. (3.27), we have



(� n)2

�
� h ni = hni 2

"
1
2

�
sin (! 1 � ! 2) T=2

(! 1 � ! 2) T=2

� 2

�
1

n!

#

: (3.30)

Such photon-counting statistics show sub-Poissonian behavior for speci�c counting inter-
vals, such asT = 2�= j! 1 � ! 2j. However, the function� (� ) decreases as� increases from
� = 0, indicating that photons are more likely to be found in close proximity, resulting in
short-term bunching rather than anti-bunching.

3.1.3.4 Compound Poisson Distribution

For a state which has a time-dependent coherenceg(2) (� ) with a decoherence time� c

(g(2) (� ) = 1 for � � � c), if the time intervalT & � c, its photon-counting statistic is no
longer Poissonian. In the discussion above, we simply categorize them into super-/sub-
Poissonian distributions. This section provides a mathematical description of the photon-
counting statistics of such a state.

The probabilityPn (t; t + T) of the detector registeringn photons in the time interval
from t to t + T is given by [132].

Pn (t; t + T) =
Z 1

0

� n

n!
e� � W(� )d�; (3.31a)

G(u) =
Z 1

0
e(u� 1)� W(� )d�; (3.31b)

hn[m]i � h n(n � 1) � � � (n � m + 1) i =
Z 1

0
� mW(� )d�; (3.31c)

where

W(� ) =
Z

� (� � N �� ) P(f � g)
Y

k

d2� k ; (3.31d)

N �� =
Z t+ T

t
dt0A � (f � g; t0) A (f � g; t0) ; (3.31e)

whereP(f � g) is the correspondingP-funtion. Here, we also show the corresponding
generating functionG(u) and the factorialm-th order mean valuehn[m]i of the state. As
you can see,Pn (t; t + T) is a linear superposition of independent Poissonian distributions
Pois(� ), each with a weightW(� ). Thus,Pn (t; t + T) is known as the compound Poisson
distribution. The weight functionW evaluates the probability of each coherent statej� i in
a P-representation with an effective intensityN �� . N �� generally calculates the effective
detected intensity between coherent statesj� i andj� i . Detailed derivations are shown in
Ref. [132]. In the special case, considering a coherent state, we haveW(� ) = � (� � N �� ).
Pn (t; t + T) becomes simply the Poisson distribution with mean valueN �� .
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3.2 Coherence Functions of Various States

This section outlines the step-by-step process of determining values of zero-delay coher-
ences of various quantum states, such as thermal states, coherent states, photon-added/
subtracted states, and displaced thermal states. Furthermore, by utilizing the input-output
formalism, we illustrate the time dependence of certain states.

3.2.1 Zero-Delay Second-Order Coherence

Zero-delay coherences are especially important because their values are directly linked
to the initial state. All expected values in both the numerator and denominator can be
expressed as integrals over theP-function of the initial state. Therefore, it is feasible to
use coherence values to evaluate the quasi-probability functions of the state.

In the case� = 0, the second-order coherenceg(2) (� ) in Eq. (3.20) reduces to

g(2) (0) =
ĥayâyââi
ĥayâi 2

=
hn2i � h ni

hni 2
= 1 +

h� ni 2 � h ni
hni 2

: (3.32)

Here, the commutation relation[ây; â] = 1 has been used. With this, it is straightforward to
calculate the zero-delay second-order coherences by evaluating the mean and the variance
of the photon number.

Thermal State As shown in Eq. (3.3), the second-order coherence is

g(2) (0) =
2hn2i + hni � h ni

hni 2
= 2: (3.33)

Coherent State We havehn2i = hni 2 + hni , and its second-order coherence reads

g(2) (0) =
hn2i + hni � h ni

hni 2
= 1: (3.34)

Fock State The Fock statejni is an eigenstate of the number operator. Thus we have

hn2i = hni 2; (3.35)

Its second-order coherence is

g(2) (0) =
hni 2 � h ni

hni 2
= 1 �

1
hni

: (3.36)

Displaced Thermal state A displaced thermal statejnth ; � i is initially a thermal state
and displaced in the coherent basis by a displacement operatorD̂(� ). Its asscoiated
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density matrix�̂ is

� (� ) = D̂(� )� th D̂y(� ): (3.37)

It is straightforward to calculate the mean and the variance of the photon number,
which are

hni = j� j2 + nth (3.38)

hn2i = j� j2 (2nth + 1) + n2
th + nth (3.39)

Hence, its second-order coherence is

g(2) (0) =
2j� j2=nth + 1

(1 + j� j2=nth )2 = 1 +
2� � 1 + 1

(1 + � � 1)2
; (3.40)

where� = nth =j� j2 is the ratio of the mean thermal photon numbernth over the
displacement amplitude square.

General Single-Mode Gaussian StateThe most general single-mode Gaussian state is
described as the displaced squeezed thermal state [133]. The density matrix of this
state is given by

�̂ n th ;�;� � D̂(� )�̂ n th ;� D̂y(� ) = D̂(� )Ŝ(� )�̂ n th Ŝy(� )D̂y(� ); (3.41)

whereD̂(� ) � exp(� ây � � � â) is the displacement operator,Ŝ(� ) � exp[1
2(� � â2 �

� ây2)] is the squeezing operator and�̂ n th is the density operator of a thermal state
with a mean occupancynth .

The corresponding two-time coherence is [133]

g(2) (0) = 1 +
2j� j2(n � cos (� � 2� )s) + s2 + n2

(j� j2 + n)2 ; (3.42a)

ntot �


âyâ

�
= j� j2 + n; (3.42b)

with

� = arg( � ); � = arg( � ); (3.43a)

n � Tr
�
�̂ n th ;� âyâ

�
=

�
nth +

1
2

�
cosh 2j� j �

1
2

; (3.43b)

s � j Tr [ �̂ n th ;� ââ]j =
�

nth +
1
2

�
sinh 2j� j; (3.43c)

wherentot is the total photon number.
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These speci�c examples show that using the number state basis as an expansion basis is
highly advantageous when calculating photon-counting statistics. This is because number
states are eigenstates of the number operator and are also the preferred basis for creation
and annihilation operators.

3.2.2 High-Order Coherence

The calculation of high-order coherence functions is similar to the approach used in evalu-
ating the second-order coherence function Eq. (3.20). The zero-delaymth-order coherence
g(m)(0) is

g(m)(0) =
hn(n � 1) � � � (n � m + 1) i

hni m
: (3.44)

Both the numerator and the denominator can be calculated byhf (n)i =
P

Pm f (m). The
following example explicitly demonstrates this approach.

For a thermal statejnth i whose occupancy isnth , � n (the probability of the statejni )
follows the geometric progression. The summation over the numerator in Eq. (3.44) yields

hn � � � � (n � m + 1) i =
1X

n=0

nn
th

(1 + nth )n+1
� n � � � � (n � m + 1) = m!nm

th : (3.45)

Therefore, the zero-delaymth-order coherenceg(m)(0) reads

g(m)(0) = m! (3.46)

which is independent of the thermal occupancynth .
An alternative way to calculate the coherence of Gaussian states is using Wick's the-

orem or Isserlis's theorem. In probability theory, Isserlis' theorem or Wick's probability
theorem is a formula that allows one to compute high-order moments of the multivariate
normal distribution in terms of its covariance matrix.

Theorem 1 (Wick's Theorem) If (X 1; X 2 � � � X n ) is a zero-mean multivariate normal
random vector, then

E [X 1X 2 � � � X n ] =
X

p2 P 2
n

Y

f i;j g2p

E [X i X j ] =
X

p2 P 2
n

Y

f i;j g2p

Cov (X i ; X j ) ; (3.47)

where the sum is over all the pairings off 1; 2� � � ng, i.e. all distinct ways of partitioning
f 1; 2� � � ng into pairs f i; j g and the product is over the pairs contained inp. Pn is the
permutation group off 1; 2� � � ng.

Note that this theorem only applies to Gaussian states. For non-Gaussian random vari-
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ables, the moment-cumulants formula replaces the role of Wick's probability formula
[134].

The thermal state is a Gaussian state. The following shows how to apply Wick's
theorem to get its high-order coherence. The numerators in the second-order coherence
Eq. (3.32) can be evaluated by

ĥay
0ây

1â1â0i = ĥay
0â0ihây

1â1i + ĥay
0â1ihây

1â0i ; (3.48)

whereâ0 = â(t) andâ1 = â(t + � 1). Thus, this yields the value ofg(2) (0) for a thermal
state asg(2) (0) = 2 . Applying the theorem to the numerator in Eq. (3.44) yields

ĥay
0ây

1 � � � ây
m� 1âm� 1 � � � â1â0i =

X

p2 P 2
n

Y

f i;j g2p

ĥay
i âj i : (3.49)

There arem! possible permutations for the groupf 0; � � � ; m � 1g. Hence, the value of the
mth-order coherence isg(m)(0) = m!.

The anti-normally ordered coherenceh(m)(� 1; � � � ; � m� 1) is de�ned as

h(m)(� 1; � � � ; � m� 1) =
ĥa(t) � � � â(t + � � � � m� 1)ây(t + � � � � m� 1) � � � ây(t)i

ĥaâyi m
: (3.50)

These are used in Sec. 7.3 and Sec. 7.4. We can evaluate the anti-normally ordered coher-
ence of a thermal state in the same manner, which gives

h(m)(� 1; � � � ; � m� 1) =

P
p2 P 2

n

Q
f i;j g2pĥai â

y
j i

Q
i 2f 0;��� ;m � 1gĥai â

y
i i

= m!: (3.51)

3.2.3 Post-Selected States

Post-selected states are states conditionally selected based on measurement results. They
are out of thermal equilibrium with their thermal reservoir. These post-selected states
exhibit different photon-counting statistics and have different energies than the original
states (i.e., prior to the post-selection).

In quantum optics, one can conditionally subtract or add quanta of thermal energy even
with imperfect single-photon detectors. More explicitly, photon addition always results in
a non-classical state [87, 135, 136], whereas photon subtraction produces a non-classical
�eld only if the original state was already non-classical [137, 138]. Moreover, a sequence
of photon creation and annihilation operators creates more interesting states [87, 139]. No-
tice that the creation and annihilation operations do not commute [88, 140], so a sequence
of operators of different orderings produces yet another distinct state.

For certain non-classical post-selected states, their negative quasi-probabilities enable

43



post-selected experiments to outperform optimal post-selection-free experiments, yielding
high information-cost rates impossible in any classical theories [89]. A preparation-and-
postselection procedure has been proposed to achieve an arbitrarily large Fisher informa-
tion, bene�ting quantum-enhanced metrological advantage [3].

In the following, I derive and discuss the statistical properties of certain post-selected
states. For brevity, I restrict the discussion to the case of an ensemble of identical quantum
particles, such as photons in a single-mode radiation �eld.

The bosonic creation or annihilation operators are used to describe the addition or
subtraction of a single photon to/from the light �eld. For a thermal statejnth i , the addition
of a single photon is achieved by operating the creation operatorây on the initial state.
Thus we have asingle-photon-added thermal state (SPAS), denoted asjn+1

th i . The density
matrix �̂ +1 of a SPAS can be derived by Bayesian updating of the density matrix of the
original thermal statê� th in Eq. (3.3). More explicitly, With the addition of one photon,
we have

�̂ th ! � ây�̂ th â; (3.52)

so that

� m jmihmj ! �� mmjm � 1ihm � 1j (3.53)

up to an overall normalization factor chosen to satisfy�
P 1

m=1 m� m = 1. Thus, � =
1=Tr[ ây�̂ th â]. The density matrix̂� +1 is

�̂ +1 =
1X

n=0

n + 1
(1 + nth )2

(
nth

1 + nth
)n jn + 1ihn + 1j: (3.54)

Substituting Eq. (3.54) into Eq. (3.44) yields the second-order coherence of a SPAS, which
is

g(2) (0) =
6n2

th + 4nth

(2nth + 1) 2
: (3.55)

Similarly, the density matrix̂� � 1 of asingle-photon-subtracted thermal state (SPSS) is
given by

�̂ � 1 =
â�̂ th ây

Tr [ â�̂ th ây]
: (3.56)
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That is,

�̂ � 1 =
1X

n=0

(1 + n)

(1 + nth )2

�
nth

1 + nth

� n

jnihnj: (3.57)

The second-order coherence of a SPSS is

g(2) (0) =
6n2

th

4n2
th

=
3
2

: (3.58)

This result is also independent of the initial phonon occupancy, similar to the result of a
thermal state. The underlying reason for this independence will be explained in Sec. 3.4.4.

3.2.3.1 Multi -Photon-Added/Subtracted States

The same procedure can be iteratively applied to the density matrix of the thermal statek
times to obtaink-photon-subtracted/added thermal states, which are

�̂ � k =
â�̂ k� 1ây

Tr [ â�̂ k� 1ây]
=

âk �̂ th âyk

ĥayk âk i
; (3.59a)

�̂ + k =
ây�̂ k� 1â

Tr [ ây�̂ k� 1â]
=

âyk �̂ th âk

ĥak âyk i
: (3.59b)

More explicitly, the probability� m j � k of havingm photons after addition/subtraction ofk
photons is updated as

� m j � k =
1

k! (nth )k

(m + k)!
m!

1
(nth + 1)

�
nth

nth + 1

� (m+ k)

; (3.60a)

� m j+ k =

8
<

:

0 ; m < k

1
k!(n th +1) k

(m+ k)!
m!

1
(n th +1)

�
n th

n th +1

� (m� k)
:m � k

(3.60b)

The mean photon number ofk-photon-subtracted/added states are

hnij � k =
ĥay(k+1) â(k+1) i

ĥay(k) â(k) i
= ( k + 1) nth ; (3.61a)

hnij + k =
ĥak âyââyk i

ĥak âyk i
= ( k + 1) nth + k: (3.61b)
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The corresponding second-order moments are

ĥayâyââi
�
�
� k

=
ĥay(k+2) â(k+2) i

ĥay(k) â(k) i
= ( k + 1)( k + 2) nth ; (3.62a)

ĥayâyââi
�
�
+ k

=
ĥak âyâyâââyk i

ĥak âyk i
= ( k + 1)( k + 2) n2

th + 2k(k + 1) nth + k2 � k: (3.62b)

Therefore, the second-order coherences of these states are

g(2) (0)
�
�
� k

=
k + 2
k + 1

; (3.63a)

g(2) (0)
�
�
+ k

=
(k + 1)( k + 2) n2

th + 2k(k + 1) nth + k2 � k
((k + 1) nth + k)2

: (3.63b)

3.2.3.2 High-Order Coherence of a SPSS/SPAS

It is also interesting to show the high-order coherence of some post-selected states.

SPSS Themth-order moment of a SPSS is

ĥaym âm i
�
�
� 1

=
ĥay(m+1) â(m+1) i

ĥayâi
= ( m + 1)! nm

th ; (3.64)

and its corresponding coherence is

g(m)(0)
�
�
� 1

=
(m + 1)! nm

th

(2nth )m
=

(m + 1)!
2m

: (3.65)

SPAS Themth-order moment of a SPAS is

ĥaym âm i
�
�
+1

=
1X

n=0

n(n � 1) � � � (n � m + 1) � n j � 1 = m![(m + 1) nth + m]nm� 1
th ;

(3.66)

and its correspondingmth-order coherence is

g(m)(0)
�
�
+1

=
m![(m + 1) nth + m]nm� 1

th

(2nth + 1) m
: (3.67)

2PAS/2PSS The mth-order coherences of a2-photon-added/subtracted state (2PAS
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/2PSS) is

g(m)(0)
�
�
� 2

=
(m + 2)!
2 � 2m

; (3.68a)

g(m)(0)
�
�
+2

=
m!nm� 2

th

h
( m(m� 1)

2 + 2m + 1) n2
th + m(m + 1) nth + m(m� 1)

2

i

(3nth + 2) m
: (3.68b)

As you might have noticed, the results of post-selected states are closely related to
high-order coherences of a thermal state, which will be discussed in Sec. 3.3.2.

3.2.3.3 Different Ordered Coherences of a SPAS/SPSS

Besides the conventional normally ordered coherence functions, we show all other ordered
second-order coherences of a SPAS/SPSS in the following.

For a SPAS, we have

ĥaââyâyi
ĥaâyihââyi

�
�
�
�
+1

=
3
2

; (3.69a)

ĥaâyââyi
ĥaâyihâyâi

�
�
�
�
+1

=
(3nth + 1)( nth + 2)
(2nth + 1)( nth + 1)

; (3.69b)

ĥayââyâi
ĥaâyihâyâi

�
�
�
�
+1

=
6n2

th + 6nth + 1
(2nth + 2)(2 nth + 1)

; (3.69c)

ĥayâyââi
ĥayâihâyâi

�
�
�
�
+1

=
(6nth + 4) nth

(2nth + 1) 2
; (3.69d)

For a SPSS, we have

ĥaââyâyi
ĥaâyihââyi

�
�
�
�
� 1

=
2(3nth + 1)( nth + 1)
(2nth + 1)(2 nth + 1)

; (3.70a)

ĥaâyââyi
ĥaâyihâyâi

�
�
�
�
� 1

=
6n2

th + 6nth + 1
2nth (2nth + 1)

; (3.70b)

ĥayââyâi
ĥaâyihâyâi

�
�
�
�
� 1

=
3nth + 1
2nth + 1

; (3.70c)

ĥayâyââi
ĥayâihâyâi

�
�
�
�
� 1

=
3
2

; (3.70d)

These quantities can be used to reveal the nonclassical nature of post-selected states
by violating certain classical bounds discussed in Sec. 3.5.1.
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3.2.3.4 Interpretation of the Post-Selected Photon Number

In this section, we discuss on the mean photon occupancy of post-selected states. In par-
ticular, we explain how the mean occupancy increases by (k + 1)-fold after subtractingk
photons. The increase of the mean photon number after subtraction seems to be counter-
intuitive at �rst glance, that can be understood as a Bayesian update on the probabilities,
as elaborated below.

Any measurement that consists of a sequence of random variablesf X n ; n = 1; 2; 3; � � � g
(X n means state at timen) satis�es

P(xn+1 ) =
X

x1 ��� xn 2S

P(xn+1 jxn ; xn� 1; � � � x1)P(xn ; xn� 1; � � � x1); (3.71)

whereP(xn ; xn� 1; � � � x1) is the probability of the �rstn variablesf X n ; X n� 1; � � � ; X 1g
beingf xn ; xn� 1; � � � x1g, P(xn+1 ) is the probability ofX n = xn andP(xn jxn� 1; xn� 2; � � � x1)
is the corresponding conditional probability.S = f s1; s2; � � � ; smg is the set of all possible
comes of each variableX i .

If this process is memoryless (i.e., the future stateX n+1 is independent of the past
states and depends only on the present stateX n ), then Eq. (3.71) is reduced into a Markov
chain process, given by

P(xn+1 ) =
X

xn 2S

P(xn+1 jxn )P(xn ): (3.72)

Let M be anm � m matrix (wherem is the maximal number of possible values of each
X i ), which denotes the transition matrix of this Markov chain process, so thatM ji =
P(xn+1 = sj jxn = si ).

The reversed process is described by

P(xn ) =
X

xn +1 2S

P(xn jxn+1 )P(xn+1 ); (3.73)

with the inversion matrixN whereN ji = P(xn = sj jxn+1 = si ). Using Bayes' theorem,
we have the following relation betweenM andN :

N ji = P(xn = sj jxn+1 = si ) = P(xn+1 = si jxn = sj )
P(xn = sj )

P(xn+1 = si )
= M ij

P(xn = sj )
P(xn+1 = si )

:

(3.74)
Consider a stationary Markov chainX i whose probability satis�es

(
P(X i = 1) = �

P(X i = 0) = 1 � �:
(3.75)
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So we haveE[X i ] = � . If this is a stochastic process of photons released by a thermal
state, we haveP(x i = 1jx i � 1 = 1) = 2 � which is equivalent tog(2) (0) = 2 . In addition,

M satis�es the stationary condition: the stationary probability distributionP � =
�

�
1 � �

�

is invariant after the Markov transition

P � = M � P � : (3.76)

Thus, the transition matrixM can be

M =

"
2� � � 2� 2

1� �

1 � 2� 1 � � � 2� 2

1� �

#

: (3.77)

SubstitutingM into Eq. (3.74), we haveN = M .
The expected valueE[X i ] (i.e., the mean photon numberhni in this experiment) of a

post-selected state is thus twice the selection-free state. That is

E[X Post� Selected]
E[X ]

=
P(xn+1 = 1jxn = 1)

P(xn+1 = 1)
= 2: (3.78)

We denoteX Pre� Selected for any X n� 1 if X n = 1 (“Pre-Selected” means the selected
events are prior to the selection condition). Similarly, we have

E[X Pre� Selected]
E[X ]

=
P(xn� 1 = 1jxn = 1)

P(xn� 1 = 1)
= 2: (3.79)

This result indicates that these conditional results are time reversible, which stems from
Bayes's theorem.

Under the same Markov chain process assumption, we can generalize this result to
k-photon-conditioned states. Consider a stationary Markov chainX i whose values are in
f 0; 1� � � ; mg (m � k). The ratio of the mean occupancy between a post-selected state by
conditioningxn = k and a selection-free state is

E[X Post� Selected]
E[X ]

=

P m
j =0 j � P(xn+1 = j jxn = k)
P m

j =0 j � P(xn+1 = j )
: (3.80)

Similarly, we have the time-reversible relation between the post- and pre-selected states as

E[X Post� Selected]
E[X Pre� Selected]

=

P m
j =0 j � P(xn+1 = j jxn = k)

P n
j =0 j � P(xn� 1 = j jxn = k)

= 1: (3.81)
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3.3 Decoherence of Different states

This section presents calculations of time-dependent coherence functions for a thermal
state, a post-selected state, and a displaced thermal state. These functions are directly
utilized in the experiment. The decoherence of a quantum system can be modeled by
coupling to a thermal reservoir, which can be evaluated in the input-output formalism.
Here, two different approaches are taken to calculate the decoherence of a Gaussian state.

3.3.1 Decoherence of a Thermal State

Thermal states are the simplest but very important Gaussian states as they are in ther-
mal equilibrium with the reservoir. We calculate the decoherence of a thermal state using
two different approaches: multi-mode interference [100] and input-output formalism [98].
These two approaches are different in their mathematical formalisms, but both use Gaus-
sianality to simplify the calculation.

3.3.1.1 Multi-Mode Interference

In multi-mode quantum optics [100], the basis of the state is

fj nk1 i 
 � � � j nk i i � � � 
 j nkm ig (3.82)

wherekm is the wavenumber vector,i 2 f 1; 2� � � mg is the mode index andjnk i i is the
correspondingjni Fock state of modeki . For brevity, let's denote this basis asjf nk gi ,
with k = f k1; k2 � � � ; kmg.

The First-Order Coherence
In the Fock state basis, the expectation value of the intensityhÊ � (t)Ê + (t)i of a Gaus-

sian state satis�es
D

Ê � (t)Ê + (t)
E

/
X

f nk g

� nk i ;nk i
hnk i jÊ

� (t)Ê + (t)jnk i i /
X

k i 2 k

! k i hnk i i ; (3.83)

where! k i is the frequency of modeki , and we only keep the diagonal terms� nk i ;nk i
in the

density matrix because the state is Gaussian. Thus, the �rst-order coherence is

g(1) (� ) =

D
Ê � (t)Ê + (t + � )

E

D
Ê � (t)Ê + (t)

E =

P
k i 2 k ! k i hnk i i e� i! k i �

P
k i 2 k ! k i hnk i i

: (3.84)

Consider a resonance at! 0 with a linewidth� . When this resonance is in thermal equilib-
rium (i.e., a thermal state driven by a frequency-independent input), the power spectrum
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satis�es

SÊ � Ê + (ki ) / ! k i hnk i i /
�= 2�

(! 0 � ! k i )2 + � 2=4
: (3.85)

In the continuous mode approximation, which is accurate for chaotic light that excites a
large number of modes, the summation overk in Eq. (3.84) is converted into an integral.
Therefore, Eq. (3.84) can be reexpressed as

g(1) (� ) =
Z 1

0
d! k

(�= 2� ) exp (� i! k � )

(! k � ! 0)2 + � 2=4
: (3.86)

This integral can be done using a contour over the lower half complex plane with only one
simple pole at! 0 � i�= 2. That is

g(1) (� ) =
Z 1

�1
d! k

(�= 2� ) exp (� i! k � )

(! k � ! 0)2 + � 2=4
= 2�i � (� 1) � R es(! 0 � i�= 2) = e� i! 0 � � � j � j=2:

(3.87)
Here, the lower limit of this integral is approximated as�1 (highlighted in red) for a
resonance! 0 � � without signi�cant change in its value.

The Second-Order Coherence
For a Gaussian state, the �eld operator product in the second-order coherence generally

contains operators of the form̂ay
k ây

l âm ân , where there are only two terms having non-zero
expectation values in the Fock state basis for :

ây
k ây

l âk âl ; ây
k ây

l âl âk : (3.88)

Hence the average in the numerator reduces to

D
Ê � (t)Ê � (t + � )Ê + (t + � )Ê + (t)

E
/

ZZ
! k hnk i ! l hnl i

�
1 + e� i (! l � ! k )�

�
d! kd! l ;

(3.89)
where we have replaced the summation by the integral in a continuous mode limit. Sub-
stituting Eq. (3.85) into this equation yields

g(2) (� ) =
ZZ

d! kd! l
(�= 2� )2

�
1 + e� i (! k � ! l )�

�

�
(! 0 � ! k)2 + � 2=4

� �
(! 0 � ! l )

2 + � 2=4
� : (3.90)

The pole for! k is at ! 0 � i�= 2 and the pole for! l is at ! 0 + i�= 2. Applying contour
integrals for both! k and! l , we have the time-dependent second-order coherenceg(2) (� )

g(2) (� ) = 1 + e� ��= 2e� i (! 0 � ! 0 � i�= 2)� = 1 + e� �� = 1 + jg(1) (� )j2: (3.91)

The same procedure can be extended to get higher-order coherence functions of thermal
states.
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3.3.1.2 Input-Output Formalism

This section presents calculations of coherence functions using the input-output formal-
ism.

For any Gaussian state, Wick's theorem implies that high-order moments can be eval-
uated in terms of the second-order moments. For example, the numerators in the second-
order coherence

g(2) (� 1) =
ĥay

0ây
1â1â0i

ĥay
0â0ihây

1â1i
; (3.92)

whereâ0 = â(0) andâ1 = â(� 1), can be evaluated by

ĥay
0ây

1â1â0i = ĥay
0â0ihây

1â1i + ĥay
0â1ihây

1â0i : (3.93)

These �rst-order correlations can be calculated by solving the cavity's quantum Langevin
equation [99, 133]

_̂a = �
� �

2
� i!

�
â +

p
� exâin; (3.94)

whereâin is the thermal noise input withĥaini = 0. The correlations of̂ain are given by
ĥay

in(� )âin(0)i = nth� (� ) andĥain(� )ây
in(0)i = ( nth + 1) � (� ), where� � 0. The formal

integral of Eq. (3.94) yields

â(� ) =
p

�

1Z

�1

dt0e� (�= 2� i! )( � � t0) âin(t0): (3.95)

Substituting the correlations ofâin into Eq. (3.95), we obtain the �rst-order normally/anti-
normally ordered correlation functions of a thermal state

ĥay(� )â(0)i = nthe� (�= 2+ i! )� ; (3.96a)

ĥa(� )ây(0)i = ( ncav + 1) e� (�= 2� i! )� : (3.96b)

Notice that Eq. (3.96a) and (3.96b) only work for� � 0. The value of the second moment
for � � 0 is obtained by simply taking the conjugation of Eq. (3.96a) and (3.96b).

Combining Eq. (3.92) and (3.96a) results in the time-dependent second-order coher-
ence function of a thermal state

g(2) (� ) = 1 + e� �� : (3.97)
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3.3.1.3 Higher-Order Coherence

In the following, we will use the similar scheme to generalize the calculation of the coher-
ence functions to a higher order.

For example, the third-order coherence function is de�ned as

g(3) (� 1; � 2) =
ĥay

0ây
1ây

2â2â1â0i

ĥay
0â0ihây

1â1ihây
2â2i

; (3.98)

whereâ2 = â(� 1 + � 2). Applying Wick's theorem, its numerator can be decomposed into

ĥay
0ây

1ây
2â2â1â0i = ĥay

0â0ihây
1â1ihây

2â2i

+ ĥay
0â0ihây

1â2ihây
2â1i + ĥay

0â1ihây
1â0ihây

2â2i

+ ĥay
0â1ihây

1â2ihây
2â0i + ĥay

0â2ihây
1â0ihây

2â1i

+ ĥay
0â2ihây

1â1ihây
2â0i : (3.99)

Substituting Eq. (3.96a) into Eq. (3.99), we have

g(3) (� 1; � 2) = 1 + e� �� 1 + e� �� 2 + 3e� � (� 1+ � 2 ) : (3.100)

Similarly, we have the fourth-order coherence function

g(4) (� 1; � 2; � 3) = 1 + e� �� 1 + e� �� 2 + e� �� 3 + � � �

3e� � (� 1+ � 2 ) + 3e� � (� 2+ � 3 ) + e� � (� 1+ � 3 ) + 9e� � (� 1+ � 2+ � 3 ) + 4e� � (� 1+2 � 2+ � 3 ) : (3.101)

The expressions of the anti-normally ordered coherence functions can be obtained in
the same method.

We will discuss some results of these high-order coherences that can be easily in-
terpreted using intuition via the following. The fourth-order photon coherence func-
tion g(4) (� 1; � 2; � 3) can be reduced into results of the lower-order coherence functions
g(3) (� 1; � 2). The subset of fourth-order coherenceg(4) (� 1; 1 ; � 3) is equivalent to the prod-
uct of two one-dimensionalg(2) (� ) functions. If the third photon arrives with delay� 2 =
1 , then the arrivals of the third and the fourth photons are uncorrelated with the arrival
of the �rst pair of photons. That is,g(4) (� 1; 1 ; � 3) is proportional to the product of the
probability of measuring a pair of photons separated by a delay� 1 and the probability of
measuring another pair of photons separated by a delay� 3. This can be seen from the
expression forg(4) (� 1; � 2; � 3) given in Eq. (3.101), where setting� 2 = 1 results in

g(4) (� 1; 1 ; � 3) = 1 + e� �� 1 + e� �� 3 + e� � (� 1+ � 3 ) = g(2) (� 1)g(2) (� 3):

Similarly, the subsetg(4) (� 1; � 2; 1 ) is equivalent tog(3) (� 1; � 2). If the fourth photon
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arrives with delay� 3 = 1 , then its arrival is uncorrelated with the arrivals of the �rst three
photons. Therefore,g(4) (� 1; � 2; 1 ) is proportional to the probability of measuring a triplet
of photons with a delay� 1 between the �rst and second and a delay� 2 between the second
and third. We can also see this by setting� 3 = 1 in Eq. (3.101), which yields

g(4) (� 1; � 2; 1 ) = 1 + e� �� 1 + e� �� 2 + 3e� � (� 1+ � 2 ) = g(3) (� 1; � 2): (3.102)

3.3.2 Decoherence of Post-Selected States

The decoherence of post-selected states can be evaluated by the combination of different
coherence functions of a thermal state. By way of illustration, consider the second-order
coherence of a SPSS,

g(2) (� )
�
�
� 1

=
ĥay(0)ây(� )â(� )â(0)i �̂ � 1

ĥay(0)â(0)i �̂ � 1 ĥay(� )â(� )i �̂ � 1

; (3.103)

where�̂ labels the initial state and̂� � 1 marks the ansingle-photon-subtracted state. The
numerator is

ĥay(0)ây(0)ây(� )â(� )â(0)â(0)i �̂

ĥay(0)â(0)i �̂
= g(3) (0; � ) ĥay(0)â(0)i 2

�̂ ; (3.104)

and the denominator is

ĥay(0)ây(0)â(0)â(0)i �̂

ĥay(0)â(0)i �̂

ĥay(0)ây(� )â(� )â(0)i �̂

ĥay(0)â(0)i �̂
= g(2) (0) g(2) (� ) ĥay(0)â(0)i 2

�̂ : (3.105)

So we have

g(2) (� )
�
�
� 1

=
g(3) (0; � )

g(2) (0) g(2) (� )
: (3.106)

The normally ordered second-order coherence function of asingle-photon-subtracted ther-
mal state is

g(2) (� )
�
�
� 1;th

=
1 + 2e� �t

1 + e� �t
: (3.107)

It is straightforward to show that

g(2) (� )
�
�
� 1;th

= h(2) (� )
�
�
+1 ;th

: (3.108)

More generally, the subtraction (addition) ofk photons at timet = 0 from a state
described by density matrix̂� yields the state with density matrix̂� � k (�̂ + k)

�̂ � k =
(â(0))k �̂ (ây(0))k

h(ây(0))k (â(0))k i �̂
; (3.109a)
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�̂ + k =
(ây(0))k �̂ (â(0))k

h(â(0))k (ây(0))k i �̂
: (3.109b)

Through anab-initio evaluation similar to that illustrated above, thenth-order coherence
of ak-photon-subtracted (added) state is evaluated in terms of the coherences of the steady
state�̂ to be

g(n)(� )
�
�
� k

=
g(k+ n)(0
 k ; � )

�
g(k)(0)

� n� 1

g(k+1) (0)
� Q n� 1

p=1 g(k+1)
�
0
 (k� 1); tp

�� ; (3.110)

where� = ( � 1; � 2; :::; � n� 1), 0
 k = (0 ; 0; ::: k times), andtp =
P p

j =1 � j is the(p + 1) th

time. (Recall that� k is the delay between thekth and(k + 1) th time.)
Note that the derivation and discussion above imply that the coincidences and normal-

ization required to evaluate thenth-order coherences ofk-photon heralded states occur
as various subsets in the higher-dimensional(n + k)-photon detection record. While the
record, viewed as a whole, corresponds to that of the equilibrium state (which, for this
work, is a thermal state), the post-selection extracts the non-equilibrium (non-thermal)
heralded state coherences.

For a thermal statê� th, we have

g(2) (� )j � k =
g(k+2) (0
 k ; � )g(k)(0)

g(k+1) (0)g(k+1) (0
 (k� 1); � )
; (3.111a)

g(2) (� )j � k;th =
1 + ( k + 1) e� ��

1 + ke� ��
: (3.111b)

Mean Photon Numbers
Using Eq. 3.109a), we obtain the mean photon number of ak-photon-subtracted state

at delay time�

n� k(� ) = hby(� )b(� )i �̂ � k =
h(by(0))kby(� )b(� )(b(0))k i �̂

h(by(0))k (b(0))k i �̂
: (3.112)

Dividing both sides byn(0) = hby(0)b(0)i �̂ yields

n� k(� )
n(0)

=
g(k+1) (0
 (k� 1); � )

g(k)(0)
(3.113)

Eq. 3.113 indicates that the mean photon number of ak-photon-subtracted state can be
measured by the ratio of its high-order coherence functions.

Similarly, the mean photon number of ak-photon-added state at delay time� is (using
Eq. 3.109b)

n+ k(� ) + 1 = hby(� )b(� )i �̂ + k + 1 =
h(b(0))kb(� )by(� )(by(0))k i �̂

h(b(0))k (by(0))k i �̂
: (3.114)
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Dividing both sides byn(0) + 1 = hb(0)by(0)i �̂ yields

n+ k(� ) + 1
n(0) + 1

=
h(k+1) (0
 (k� 1); � )

h(k)(0)
: (3.115)

3.3.3 Decoherence of a Displaced Thermal State

The dynamics of̂a(t) is governed by Eq. (2.10). This evolution is characterized by the
damping rate� in a standard input-output formalism. In the rotating frame of the input
frequency! in , we have

@t d̂(t) = �
1
2

� d̂(t) �
p

� exd̂in (t); (3.116)

where we de�ne the quantum �uctuation̂d = â � �; � = ĥai , the operator̂din = âin � � in

is the input noise, which satis�es the following relations

hd̂in (t)i = 0; (3.117a)

hd̂y
in (t)d̂in (0)i = nth � (t); (3.117b)

� in = �
p

� ex

2
�; (3.117c)

wherenth is the equivalent occupancy of the input thermal �uctuation. The Langevin
equation (3.116) is formally integrated to give

d̂(t) = �
p

� ex

Z t

�1
dt0e� (1=2)� (t � t0) d̂in (t0) : (3.118)

Thus, the second-order correlation of the �uctuation is

hd̂y(t)d̂(0)i = nth e� (1=2)�t : (3.119)

Applying Wick's theorem to the Gaussian quantum �eldd̂, we have

hd̂y(t)d̂y(t + � )d̂(t + � )d̂(t)i = 2n2
th e� �t : (3.120)

Combining Eq. (3.119) and (3.120), the second-order coherence function of the �eldâ =
d̂ + � reads

g(2) (t) = 1 +
2nth j� j2e� �t= 2 + n2

th e� �t

(j� j2 + nth )2
: (3.121)

In the small displacement limit,i.e., j� j2 � nth , the coherence function reduces into
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the well-known decoherence of a thermal state. In the large displacement limitj� j2 � nth ,
the correlation Eq. (3.121) approximates as

g(2) (t) � 1 +
2nth e� �t= 2

j� j2
: (3.122)

The result in Eq. (3.122) indicates such a displaced thermal state has a decoherence time
twice of a thermal state.

The decoherence of general states should be calculated by solving the evolution of the
state and evaluating the correlations accordingly.

3.4 Quasi-Probability Distributions

To incorporate classical uncertainty and quantum uncertainty, the density operator is typi-
cally used to describe a mixed state, as mentioned in 3.1. Instead of the density operator,
one can also use distribution functions that in many respects are similar to classical prob-
ability distributions. Nonetheless, the quantum nature of these distributions distinguishes
them from classical ones, and this distinction will be explained in the following.

Since the essential quantum features of these distributions can be measured experi-
mentally, they are often used to verify the quantumness of the state. This makes them a
valuable tool for understanding and analyzing quantum systems, particularly in the context
of quantum information and computation.

3.4.1 Quantum Distribution Theory

Quasi-probability functions can be utilized to depict quantum states (both pure and mixed).
Unlike classical probability distributions, which are always positive, quasi-probability
functions can display negative values and can be extended beyond the range of 0 to 1.

In classical physics, the de�nite state corresponding to positionx0 and momentump0

can be represented as a Dirac delta distribution� (x � x0; p � p0) over the phase space. If
instead we want to represent a statistical essemble or a lack of knowledge about the state,
we can replace this delta distribution with a positive-de�nite probability density function
f (x; p). The statistical averagehoi of any observable quantityo(x; p) is given by:

hoi =
Z

f (x; p)o(x; p)dxdp: (3.123)

The extension of this approach to represent quantum states is the quasi-probability distri-
bution that will be discussed in this section.

In this section, we introduce the three most used quasi-probability distribution func-
tions: the Glauber-SudarshanP-function or coherent state representation, which is often
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used to evaluate normally ordered correlation functions; the Wigner function or position-
momentum representation; and the HusimiQ-function which is associated with the anti-
normally ordered correlation functions. Each function has its unique characteristics and
can be utilized to portray different facets of quantum mechanical systems. The difference
between these quasi-probability functions emerges due to the non-commutative relation-
ship of operators.

3.4.1.1 The Glauber-SudarshanP-function

Since coherent states are considered the most classical quantum states, using them as a
basis facilitates exploring the interface of quantum-classical transition.

Like the de�nition in Eq. (3.1), the density matrix̂� can be expanded in terms of
coherent states as

�̂ =
ZZ

d2�
�

d2�
�

j� ih� j�̂ j� ih� j: (3.124)

For a normally ordered operator̂ON(â; ây), the expectation value can be written as

hÔN(â; ây)i = Tr[ �̂ ÔN(â; ây)]: (3.125)

Notice that

�
�
� � � ây

�
� (� � â) =

1
� 2

Z
exp

�
� i�

�
� � � ây

��
exp [� i� � (� � â)] d2�: (3.126)

Eq. (3.125) can then be reexpressed in terms of Eq. (3.126) as

hÔN(â; ây)i =
Z

d2�P (�; � � ) ON (�; � � ) ; (3.127)

where

P (�; � � ) = Tr
�
�̂�

�
� � � ây

�
� (� � â)

�
=

ej � j2

� 2

Z
h� � j�̂ j� i ej � j2 e� �� � + � � � d2�: (3.128)

The functionP(�; � � ) is known as the Glauber-SudarshanP-function. Due to the Her-
miticity of the density operator̂� , theP-function is real everywhere. Moreover,Tr( �̂ ) = 1
leads to the normalization ofP(�; � � )

Z
P (�; � � ) d2� = 1: (3.129)
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Reversely, the density operator can be represented in terms of theP-function:

�̂ =
Z

P (�; � � ) j� ih� jd2�: (3.130)

Notice that the coherent state basisfj � ig is an over-complete set, hence the orthogonality
condition can not be applied in the calculation.

The P-function is not nonnegative de�nite. For instance, theP-function of the Fock
statejni is given by

P(�; � � ) =
j� j2

n!
@2n

@�n@�� n
� (2) (� ); (3.131)

which is neither a nonnegative de�nite nor well-de�ned for anyn � 1.
Another equivalent procedure to generateP(�; � � ) is by its kernel function, which will

be covered in Sec. 3.4.2.

3.4.1.2 The HusimiQ-function

Just as theP-function is associated with the evaluation of normally ordered operators, the
HusimiQ-function is de�ned in terms of the evaluation of anti-normally ordered operators

Q (�; � � ) = Tr
�
�̂� (� � â)�

�
� � � ây

��
: (3.132)

Similarly, using Eq. (3.126), we have

Q (�; � � ) =
1
�

h� j�̂ j� i ; (3.133)

which is proportional to the diagonal element of the density operator in the coherent state
representation. The expectation value of the anti-normally ordered operators thus is given
by

D
ÔA

�
â; ây

� E
=

Z
Q (�; � � ) OA (�; � � ) d2�: (3.134)

TheQ-function is nonnegative de�nite and bounded, which can be seen by

Q (�; � � ) =
1
�

X

 

P jh j � ij 2: (3.135)

Becausejh j � ij 2 � 1, so we have

0 � Q (�; � � ) �
1
�

: (3.136)
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3.4.1.3 The Wigner-Weyl Function

This approach can be used to derive distribution functions for arbitrary orderings. The
Wigner-Weyl distribution is one of them, which is associated with symmetric ordering.
Interestingly, the formula for the Wigner function has been independently discovered mul-
tiple times in different contexts. In fact, Wigner was unaware that even within the context
of quantum theory, it had been introduced previously by Heisenberg and Dirac,albeit
purely formally. They only regarded it as an approximation to the complete quantum
depiction of a system like an atom, without recognizing its negative values and its signi�-
cance.

The motivation behind the Wigner function is naturally from the extension of classical
Hamiltonian physics. In classical Hamiltonian physics, a state can be described by a point
in the phase space (e.g., the space spanned by positionx and momentump). However,
due to the Heisenberg uncertainty principle, we have a quasi-probability distribution to
describe a quantum state in the phase space even in the absence of any statistical indeter-
minacy. In other words, a fundamental quantum blurring adds to any classical uncertain-
ties. The goal is to construct a formalism of quantum-mechanics-based state description
in terms of a phase space distribution, which is known as the Wiger-Weyl function.

To construct such a distribution, we �rst introduce the Weyl-transform, which maps
the operator̂A into a function ~A in the phase space in the following way [141]:

~A(x; p) =
Z

dye
� ipy

~

D
x +

y
2

jÂ(x̂; p̂)jx �
y
2

E
: (3.137)

This transform preserves the product relation as

Tr[ ÂB̂ ] =
1

2� ~

ZZ
dxdp ~A(x; p) ~B(x; p): (3.138)

Therefore, the Wigner-Weyl function is de�ned as the Weyl-transformed density matrix�̂ ,

W(x; p) =
~�

2� ~
=

1
2� ~

Z
dye� ipy

~  
�

x +
y
2

�
 �

�
x �

y
2

�
; (3.139)

so that the expectation value of an operatorÂ is

hÂi =
ZZ

dxdpW(x; p) ~A(x; p); (3.140)

which is similar to the form of the classical probability distribution in Eq. (3.123).
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The expectation values ofx andp are given by

ĥxi =
ZZ

dxdpW(x; p)x; (3.141a)

ĥpi =
ZZ

dxdpW(x; p)p: (3.141b)

Thus, the Wigner function is also known as the generating function for the probability
distribution of position and momentum by simply integrating over eitherx or p.

The Wigner function is always real due to the Hermiticity of the density matrix�̂ .
In this aspect, the Wigner function looks like a classical probability distribution. How-
ever, the Wigner function is not nonnegative de�nite, which is easily seen by consideringRR

dxdpWa(x; p)Wb(x; p) = 0 of two orthogonal states. This negativity is hidden when
the Wigner function corresponds to a physical property. Because of the uncertainty prin-
ciple, it is forbidden to determine the momentum and position in the phase space simul-
taneously. The negative-valued regions are provable to be small (by showing the relation
between nonnegativeQ-function and the Wigner function), usually covering an area of
phase space of a few~, and therefore are shielded from detection in most of the experi-
ments [142].

Lastly, likewise, the value of the Wigner function is also bounded, which is easily
shown by the following

W(x; p) =
1

2� ~

Z
dye� ipy

~  
�

x +
y
2

�
 �

�
x �

y
2

�
�

1
� ~

: (3.142)

The time evolution of the Wigner function is based on the evolution of the density
matrix �̂ , which is given by

@W
@t

=
� p
m

@W(x; p)
@x

+
1X

s=0

�
� ~2

� s 1
(2s + 1)!

�
1
2

� 2s @2s+1 U(x)
@x2s+1

@2s+1 W(x; p)
@p2s+1

;

(3.143)

whereU is the potential and is assumed to be expandable in a power series. Without
higher-order terms (s > 2) in the expansion, the evolution reduces to the familiar form

@W(x; p)
@t

=
� p
m

@W(x; p)
@x

+
@U(x)

@x
@W(x; p)

@p
= �f W(x; p); H g; (3.144)

wheref A; B g is the Poisson bracket. This is exactly the classical Liouville equation.
Therefore, in a purely harmonic potential, the dynamics of the Wigner function is identical
to that of the classical distribution which is governed by the classical Liouville equation
under the same harmonic potential. In the limit~ ! 0, the distinction between the classical
and the quantum dynamics also vanishes. Therefore, an anharmonic potential of ordern
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will result in quantum corrections of order~n� 2 over the prediction made by the classical
theory.

The physical meaning of the Wigner function can be treated as the expectation value of
the parity around(x; p) of the given state [143]. The Wigner function can be represented
as

W(x; p) =
2
h

h	 j� xp j 	 i ; (3.145)

where the parity operator is

� xp =
Z

dke� 2ikx= ~jp + kihp � kj =
Z

dye� 2ipy=~jx � yihx + yj = D(x; p)� D(x; p)� 1:

(3.146)

Therefore the Wigner function can be expressed by

W(x; p) =
1

~�

� 


  +

xp




 2

�



  �

xp




 2

�
: (3.147)

The Wigner function also corresponds to the probability distribution of the expectation
value of symmetrically ordered operators, represented by

W (�; � � ) =
1
� 2

Z
d2�e � i�� � � i� � � Tr

�
ei�a y+ i� � a �̂

�
: (3.148)

This result is more obvious and general in the discussion in Sec. 3.4.2.

3.4.2 General Representation of Quasi-Probability Distributions

In the following section, we introduce a generalized method to generate different types of
quasi-probability functions.

Different quasi-probability functions correspond to different orderings. We can write
them in terms of the characteristic functions or so-called kernels. As shown in Eq. (3.128),
(3.133) and (3.148), the Wigner,P- andQ- functions are the Fourier transforms of three
different characteristic functions [144, 145]:

C[�̂ ]
S (� ) = Tr

h
�̂e � ây � � � â

i
; (3.149)

C[�̂ ]
N (� ) = Tr

h
�̂e � ây

e� � � â
i

; (3.150)

C[�̂ ]
A (� ) = Tr

h
�̂e � � � âe� ây

i
; (3.151)
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respectively. The general representation is given by

Fi (�; � � ) =
1
� 2

Z
d2�C i (� )e� �� � + � � � ; (3.152)

wheref ig denotes the speci�c orderings.
Note that the symmetric characteristic functionC[�̂ ]

S (� ) is related to the quantum av-
erage of the displacement operatorD̂ (� ) = e� ây � � � â. Thus, three different characteristic
functions correspond to the quantum average of the three simplest orderings that can be
used in the expansion ofâ andây: symmetric ordering, normal ordering, and anti-normal
ordering,

C[�̂ ]
f i g(� ) = h: D̂ (� ) :i i ; (3.153)

where::i stands for different orderings. These functions are closely related by the Baker
–Campbell–Hausdorff (BCH) formula or the Glauber identity:

eÂ eB̂ = eÂ+ B̂ e[Â; B̂ ]=2; (3.154)

which holds whenÂ andB̂ commute with[Â; B̂ ]. So we immediately have

C[�̂ ]
N (� ) = ej � j2=2C[�̂ ]

S (� ); C[�̂ ]
A (� ) = e�j � j2=2C[�̂ ]

S (� ): (3.155)

Eq. (3.152) can be further reduced by substituting Eq. (3.126) to

Fi (�; � � ) = Tr[ �̂ : � (� � â)� (� � � ây) :i ]: (3.156)

The relation between the correlation of operators with different orderings and different
quasi-probability functions is made clear by the following [129]

D
Ôi

E
= Tr

h
�̂ Ôi

i
=

Z
d2�O i (�; � � ) Tr

�
�̂ : � (� � â)� (� � � ây) :i

�

=
Z

d2�O i (�; � � ) Fi (� ): (3.157)

The relation among characteristic functions also leads to the direct relation between
quasi-probability functions. For example,

Q (�; � � ) =
1
�

Z
P (� 0; � 0�) e�j � � � 0j2 d2� 0: (3.158)
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More generally, we can rewrite the expression for the Wigner function Eq. (3.152) as

W(�; � � ) =
1
� 2

Z
d2�C S(� )e�� � � � � �

=
1
� 2

Z
d2�e �j � j2=2CN(� )e�� � � � � � = ( F1 � P)( �; � � )

=
1
� 2

Z
d2�e + j� j2=2CA (� )e�� � � � � � = ( F2 � Q)( �; � � ); (3.159)

where (f � g) is the convolution product over the phase spacef �; � � g, F1(�; � � ) =
2�e � 2j� j2 andF2(�; � � ) = 2 �e +2 j� j2 .

3.4.3 Reconstructing the Wigner Function

One of the motivations to measure the high-order correlationsh(ây)n âm i is that knowing
all orders of correlations speci�es the quantum state of the �eld modeâ. Therefore, it is
interesting and useful to connect the phase space representations (such as the Wigner, the
Glauber-SudarshanP-, or the HusimiQ-functions) to correlations. Especially, in practice,
many unique experimental techniques exist to measure the quantitiesh(ây)n âm i . These
measured correlations can potentially be used to reconstruct the quasi-probability func-
tions experimentally [146–148].

The measured normally ordered correlations can be used reconstruct the Wigner func-
tion in the following manner [146, 148]:

W(� ) =
X

n;m

Z
d2�


�
ây

� n
âm

�
(� � � )m � n

� 2n!m!
e(� 1=2)j� j2+ �� � � � � � : (3.160)

This expression is obvious by expanding the characteristic functionC[�̂ ]
N (� ) in Eq. (3.159)

as

C[�̂ ]
N (� ) = Tr

h
�̂e � ây

e� � � â
i

=
X

n;m

Tr

"

�̂

�
ây

� n
âm (� � � )m � n

n!m!

#

: (3.161)
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Similarly, we have

P(� ) =
X

n;m

Z
d2�


�
ây

� n
âm

�
(� � � )m � n

� 2n!m!
e+ �� � � � � � ; (3.162a)

Q(� ) =
X

n;m

Z
d2�


�
ây

� n
âm

�
(� � � )m � n

� 2n!m!
e�j � j2+ �� � � � � �

=
X

n;m

Z
d2�



âm

�
ây

� n �
(� � � )m � n

� 2n!m!
e+ �� � � � � � (3.162b)

Thus, correlations of the state play the role of an expansion coef�cient in this expansion.
For a state whose Wigner function is rotationally symmetric around the origin (x =

0; p = 0), only

�

ây
� m

âm
�

terms are non-zero. The value at the originW(0; 0) is given
by

W(0; 0) =
X

m

Z 1

0
dj� j2j� j


�
ây

� m
âm

�
(�j � j2)m

� (m!)2
e(� 1=2)j� j2

=
X

m

Z 1

0
dj� j2j� j



âm

�
ây

� m �
(�j � j2)m

� (m!)2
e(+1 =2)j� j2 : (3.163)

In this simpli�ed scenario, I will now show a few examples by evaluatingW(0; 0) for
different states.

For a thermal state, we have

W(0; 0) =
Z

d2�
nm

th (�j � j2)m

� 2m!
e(� 1=2)j� j2

=
1
� 2

Z
d2�e �j � j2n th e(� 1=2)j� j2 : (3.164)

For a single-photon-added thermal state, in terms of Eq. (3.163), we have

W(0; 0) =
X

m

Z
d2�

(m + 1)!( nth + 1) m (�j � j2)m

� 2(m!)2
e(+1 =2)j� j2

=
1
� 2

Z
d2�e � (n th +1) j� j2 (1 � (nth + 1) j� j2)e(+1 =2)j� j2 : (3.165)

It is straightforward to prove this value is always negative.
Notice that in the �rst line of Eq. (3.165), if you take the integration before the summa-

tion, each integral does not converge. Hence, the derivation above is only formally correct.
Consequently, in practice, if we just use the �rst few terms in anti-normally ordered mo-
ments, we can't approach the desired Wigner function.
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More generally, Eq. (3.163) can be represented as

W(0; 0) =
X

m


�
ây

� m
âm

�

� (m!)2

Z 1

0
dj� j2j� j

�
�j � j2

� m
e(� 1=2)j� j2

=
X

m


�
ây

� m
âm

�

� (m!)2
(� 1)m2m+1 �( m + 1)

=
X

m


�
ây

� m
âm

�
(� 1)m2m+1

�m !

=
X

m

2(� 1)m (2 � h ni )mg(m)(0)
�m !

; (3.166)

where�( n) is the Gamma function. This expansion can be truncated atm-th order as a
good approximation if the condition(2 � h ni )m� 1g(m)(0) � m! is satis�ed.

For example, if the coherenceg(m)(0) of the state scales asm! (such as for thermal
states or photon-added/subtracted thermal states), Eq. (3.166) can be simpli�ed as

W(0; 0) �
X

m

2(� 1)m (2 � h ni )m

�
: (3.167)

This series converges only whenhni <
1
2

.

3.4.4 Relation between Moments and Cumulants of the Quasi-Probability
Distribution

In probability and statistics, the cumulants� n offer an alternative approach for charac-
terizing a probability distribution, as opposed to the moments (the correlations discussed
previously). Cumulants are more straightforward and intuitive than moment-based repre-
sentations. The �rst, second, and third cumulants correspond to the mean, variance, and
third central moment, respectively. Notably, for a Gaussian distribution, the third and all
higher-order cumulants are all zero. Additionally, for multiple independent random vari-
ables, the sum of theirnth-order cumulants equals thenth-order cumulant of their sum.

The cumulants of a random variableX are de�ned using the cumulant-generating func-
tion K X (t) in the following manner:

K X (t) = log E
�
etX

�
=

1X

n=1

� n
tn

n!
: (3.168)

Notice that the cumulant-generating functionK X (t) is the natural logarithm of the moment-
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generating function

MX (t) = E
�
etX

�
=

1X

n=1

� n
tn

n!
: (3.169)

Both expansions are Maclaurin series, so the value of thenth-order can be generated by
differentiating the above expansionn times and evaluating the result at zero.

The relation in Eq. (3.168) and (3.169) explicitly expresses the relation between cu-
mulants and moments as

� n = K (n)
X (0) =

dn logMX (t)
dtn

�
�
�
�
t=0

: (3.170)

The explicit expression can be obtained by using Faá di Bruno's formula for higher deriva-
tives of composite functions, given by

� n =
nX

k=1

(� 1)k� 1(k � 1)!Bn;k (0; � 2; : : : ; � n� k+1 ) ; (3.171)

where� n is then-th central moment with� 1 = 0 andBn;k are incomplete (or partial) Bell
polynomials.

The �rst few orders of cumulants� n (n > 1) as functions of the corresponding central
moments� n are

� 2 = � 2; (3.172a)

� 3 = � 3; (3.172b)

� 4 = � 4 � 3� 2
2; (3.172c)

� 5 = � 5 � 10� 3� 2; (3.172d)

� 6 = � 6 � 15� 4� 2 � 10� 3
2 + 30� 2

3; (3.172e)

� 8 = � 8 � 35� 2
4 � 28� 6� 2 + 420� 2

2� 4 � 630� 4
2: (3.172f)

Now let's consider the measured normally ordered momentsh(ây)m âm i . The expecta-
tion value is given by integrating theP-function over phase space, as shown in Eq. (3.127).
Without losing generality, we assume theP-function is centered at the origin,i.e., � 1 = 0
and is symmetric between the momentum and position. That is

P(x) =
Z

P(� )dRe(� ) =
Z

P(� )dIm (� ) = P(y); (3.173a)

P(x + iy ) = P(x)P(y); (3.173b)

where we decompose� = x+ iy , andP(x) andP(y) are marginal probability distributions
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onRe(� ) andIm (� ), respectively. Therefore, the expectation value of such a state can be
evaluated by

h(ây)m âm i =
Z

d2� j� j2mP(�; � � ) =
Z

dxdy(x2 + y2)
m

P(x; y): (3.174)

So we have

ĥayâi =
Z

dxx 2P(x) +
Z

dyy2P(y) = 2 � 2; (3.175)

where we have used the Eq. (3.173) to project the joint distribution into the marginal
probability distribution. Likewise, we have

h(ây)2â2i = 2 � 4 + 2� 2
2; (3.176a)

h(ây)3â3i = 2 � 6 + 6� 2� 4; (3.176b)

h(ây)4â4i = 2 � 8 + 8� 2� 6 + 6� 4: (3.176c)

Due to the symmetry that we assumed, all odd order moments� 2n+1 = 0. Combining
Eq. (3.172a) and (3.176a) yields the relation between the measured high-order coherence
functions and the high-order cumulants, shown as:

� 2 =
1
2

hni ; (3.177a)

� 4 =
3
8

(g(2) � 2)hni 2; (3.177b)

� 6 =
5
16

(g(3) � 9g(2) + 12)hni 3; (3.177c)

� 8 =
35
128

(g(4) � 18(g(2) )2 � 16g(3) + 144g(2) � 144)hni 4: (3.177d)

For a thermal state, insertingg(n)(0) = n! into these equations yields

� 2 =
1
2

hni ; (3.178a)

� 4 = 0; (3.178b)

� 6 = 0; (3.178c)

� 8 = 0; (3.178d)

which aligns with our expectations of a Gaussian state. Even in this case, higher-order
coherences are necessary to demonstrate the Gaussianity of the state of higher degrees of
statistical con�dence.

Note that forhni > 1, the expression of higher-order cumulant will not converge
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unless the coef�cient of� m shrinks faster than1=hni m . This result is more obvious for a
single-photon subtracted thermal state. Substituting Eq. (3.64) into Eq. (3.177), we have

� 2 =
1
2

(2nth ); (3.179a)

� 4 = �
3
16

(2nth )2; (3.179b)

� 6 =
15
32

(2nth )3; (3.179c)

� 8 = � � � (3.179d)

wherenth is the original thermal occupancy. Ifhnth i is not very small,i.e., hnth i 6� 1,
then the higher-order cumulant� n generally does not tend to zero. Consequently, in such
cases, the �rst few primary coherence functions cannot provide an accurate description of
the state. This result matches the discussion in Sec. 3.4.3. The Gaussianity of the thermal
stateP-function also implies the result discussed in Sec. 3.2.2.

3.5 Classical Bounds and Nonclassical Criteria

The quantum quasi-probability distribution behaves like a classical distribution in several
aspects, as discussed in Sec. 3.4. Some general principles of quantum mechanics imprint
features in these distributions and eventually distinguish them from any classical descrip-
tions.

In the �eld of quantum optics, a “nonclassical state” refers to a quantum state that
cannot be represented as a classical probability distribution over all possible states. Such
a state is usually associated with uniquely quantum phenomena such as superposition,
entanglement, or interference, which do not occur in any classical theories. Examples of
nonclassical states include squeezed states, entangled states, cat states, and Fock states.
Nonclassical states are signi�cant in the study of quantum mechanics and are essential to
achieving quantum advantages in applications [3, 4].

In the following, some criteria in observable statistics that can be used to distinguish a
quantum state from a classical state are derived. Furthermore, we describe a hierarchy of
“increasingly quantum” states [149–152].

3.5.1 Nonclassical States and Nonclassical Criteria

The P-function is a quantum probability distribution expanded in a coherent state basis.
As discussed in Sec. 3.4.1.1, theP-function exhibits a key distinction from classical prob-
ability distributions in that its probability density can take negative values or be otherwise
“badly behaved”. While this may be seen as a drawback resulting from the attempt to rep-
resent quantum phenomena within a classical framework, it can serve as a useful criterion
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for identifying nonclassicality.
The nonclassical states are de�ned as quantum states associated withP-functions hav-

ing negative values. It is impossible to explain such states as any classical ensemble of
coherent states.

TheP-function negativity is the lowest member of the hierarchy characterizing quan-
tum states [152]. A detailed discussion about the hierarchy of quantum states is given in
Sec. 3.5.2. A typical example is the squeezed state, for which we express the variance of
either quadrature(� X i )2 in terms of theP-function

(� X i )2 =
1
4

�
1 +

Z
d2�P (�; � � ) [( � + � � ) � (h� i + h� � i )]2

�
: (3.180)

The squeezing condition(� X i )2 < 1
4 requiresP(�; � � ) to be negative for at least some

values of� . However, for such a state, the Wigner function is positive de�nite.
It is challenging to directly measure theP-function as it is not bounded and not well-

de�ned in certain cases. Fortunately, normally ordered quantum correlations directly map
to the relevant properties of theP-function. Restricting theP-function to be nonnega-
tive de�nite yields restrictions in the coherence functions, which is known as a classical
bound. Violating these restrictions veri�es theP-function negativity of the state, proving
the nonclassicality of the state.

Figure 3.1: The second-order coherenceg(2) (0) of a m-photon-added thermal state for
various initial thermal occupanciesnth . The black dashed line represents the classical
bound given in Sec. 3.5.1.1.
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3.5.1.1 Photon Blockade Inequality

Inequality 1 (Photon Blockade Inequality) For any state having a nonnegative P-function,
we have [129]

g(2) (0) � 1: (3.181)

To see this explicitly, Eq. (3.181) can be expressed as

ĥayâyââi � h âyâi 2 � 0; (3.182)

which can be expressed as an integral of theP-function
Z

d2�P (�; � � )( j� j4 � 2j� j2ĥayâi + ĥayâi 2) � 0: (3.183)

Notice that the second term(j� j2�h âyâi )2 is nonnegative for any� . Violation of Eq. (3.181)
is satis�ed if and only ifP(�; � � ) is negative for some values of� . Thus violating this
classical bound is a suf�cient condition (not a necessary condition) to prove the state is
nonclassical.

This inequality is also known as photon blockade inequality. For instance, the second-
order coherence of a Fock statej1i is g(2) (0) = 0 , which means two photons cannot arrive
at the same time. Therefore, it is often regarded as the criterion to test a single photon
source.

Next, we evaluateg(2) (0) of a m-photon-added thermal state of an initial thermal oc-
cupancynth , which is given in Eq. (3.63b). The numerical result is shown in Fig. 3.1.
Despite the nonclassicality of such states for anym and nth , the nonclassical criterion
g(2) (0) < 1 is satis�ed only for smallnth . More speci�cally, for a single-photon-added
thermal state,nth <

p
2=2 is required to violate this classical bound.

3.5.1.2 Chebyshev Inequality

Eq. (3.181) can be generalized to inequality of high-order coherence functions, dating
back to R. J. Glauber's original discussion in 1965 [153]. This generalized classical bound
utilizes the less well-known Chebyshev inequality (other than the famous one used in
statistics) to set the inequality between high-order coherence functions of nonnegative
probability distributions.

Inequality 2 (Chebyshev Inequality) If f; g : [a; b] ! R are two monotonic functions of
the same monotonicity, then

1
b� a

Z b

a
f (x)g(x)dx �

�
1

b� a

Z b

a
f (x)dx

� �
1

b� a

Z b

a
g(x)dx

�
: (3.184)
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Figure 3.2: The critical initial thermal photonnth for variousm and n, below which
g(m)(0) , g(n)(0) of a k-photon-added thermal state violate the Chebshev inequality
Eq. (3.186). (a) and (b) show the results ofk = 1, k = 2, respectively.

If f (x) andg(x) are of opposite monotonicity, then the above inequality works in a reverse
way.

This inequality is also known as the rearrangement inequality. It is straightforward to
reexpress inequality (3.184) in the following form:

Z
d2�P (� )f (� )g(� ) �

Z
d2�P (� )f (� )

Z
d2�P (� )g(� ); (3.185)

where we simply replace1
b� adx by a weighted averaged2�P (� ). If we choosef (� ) =

(j� j2)m andg(� ) = ( j� j2)n , which are obviously two monotonic functions of the same
monotonicity, then after rearrangements and normalization, we have

g(m+ n)(0) � g(m)(0)g(n)(0): (3.186)

By choosingm = n = 1, we easily reproduce the classical bound Eq. (3.181).
To demonstrate this result more explicitly, let us consider the case of ak-photon-added

thermal state (k = 1; 2 in this discussion) with an initial thermal occupancynth . The
higher-order coherences of such states are given in Sec. 3.2.3.2. Figure 3.2 shows the
critical nth for g(m)(0) andg(n)(0), below which the Chebshev inequality Eq. (3.186) is
violated. Even though all such states are nonclassical, this particular witness of nonclassi-
cality is rendered to be unobservable by the initial thermal occupancy.

3.5.1.3 Cauchy-Schwarz Inequality

Another nonclassical bound that is frequently discussed in the literature arises from the
Cauchy-Schwarz inequality.
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Inequality 3 (Cauchy-Schwarz Inequality) If u; v 2 R n , then

 
nX

i =1

ui vi

! 2

�

 
nX

i =1

u2
i

!  
nX

i =1

v2
i

!

; (3.187)

or equivalently, for any nonnegative probability distribution

jhu; v ij 2 � h u; ui � hv; v i ; (3.188)

whereha; bi is the expectation value of the inner product betweena andb.

In the continuous case, the expectation value can be evaluated by integrating the cor-
responding probability distribution, in this case, theP-function. That is

� Z
d2� d2�P (�; � )j� j2j� j2

� 2

�
� Z

d2� d2�P (�; � )j� j4
� � Z

d2� d2�P (�; � )j� j4
�

;

(3.189)

whereP(�; � ) is the jointP-function for two separate states. Rewriting these averages in
terms of the expectation values of normally ordered operators gives

ĥayb̂yb̂̂ai 2 � h âyâyââihb̂yb̂yb̂̂bi : (3.190)

After certain rearrangements, this is equivalent to:

h
g(2)

a;b(0)
i 2

� g(2)
a;a(0)g(2)

b;b(0); (3.191)

whereg(2)
a;b is the cross coherence function between statesâ, b̂, andg(2)

a;a andg(2)
b;b are the auto

coherence functions for statesâ andb̂, respectively. This inequality holds for any proba-
bility distribution whose values are nonnegative de�nite. Violating this inequality proves
the joint P-function negativity at some� and� , and so demonstrates the nonclassicality
of this joint state.

This inequality is widely deployed in quantum communication [154] to verify the joint
state in a quantum repeater or to verify the �delity of the quantum information stored in a
quantum memory [74] for future scalable and long-distance quantum communication.

In a special case, wherev = I , this inequality also leads to

1 =
�
g(1)

a (0)
� 2

� g(2)
a;a(0); (3.192)

which is exactly the aforementioned photon blockade inequality.
Two-Mode Squeezed State
For concreteness, let us consider a joint state generated by a two-mode squeezing op-
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eratorâyb̂y + H.C. on a thermal statej0i ajnth i b. This is exactly the state generated in the
DLCZ protocol, whereg(2)

a;b(0) is given by [98]

g(2)
a;b(0) = 2 +

1
nth

>
q

g(2)
a;a(0)g(2)

b;b(0) = 2 : (3.193)

This cross-coherence always violates the classical bound that is set by the product of two
auto-coherences. The violation margin is reduced for increasing thermal occupancy, as
you can expect.

Figure 3.3: The cross-coherences and the auto-coherences of a single-photon-
added/subtracted thermal state for various initial photon occupancynth . The solid green
lines represent the cross-coherences. The blue and red solid lines are the corresponding
auto-coherences. The classical bounds are determined by the Cauchy-Schwarz inequality
in Eq. (3.191), which are shown in dashed black lines. Top: (a)(b)(c) show the results of
a single-photon-added thermal statejn+1

th i . Bottom: (d)(e)(f) show the results of a single-
photon-subtracted thermal statejn� 1

th i .

Post-Selected State
We also further investigate the violation of the Cauchy-Schwarz inequality for a single-

photon-added or -subtracted thermal state.
For a single-photon-added thermal state, let us consider the case that each of two oper-

atorsâ andây act on this state a total of two times. Thus, we have four possible outcomes
in its correlations:ĥaââyâyi , ĥaâyââyi , ĥayââyâi , andĥayâyââi . The expressions of these
coherences are given in Eq. (3.69).
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For example, forĥaâyââyi , the test of the Cauchy-Schwarz inequality is achieved by
comparing the values of(ĥayââyâi )2 and (ĥayâyââi � hâââyâyi ), or their corresponding
second-order coherences. These numerical values are shown in Fig. 3.3(a), where the
second-order cross-coherences and two auto-coherences are shown in a solid green line
and blue/red lines, respectively. By comparing the cross-coherence (green solid) with the
classical bound determined by Eq. (3.191) (dashed black), we see that the Cauchy-Schwarz
inequality is violated for smallnth .

Figures 3.3(b,c) show the results of a single-photon-added thermal state with different
orderings. Similarly, the results of a single-photon-subtracted state are shown in Fig. 3.3(d-
f).

3.5.1.4 Ḧolder's Inequality

The Cauchy-Schwarz inequality can also be extended to a more general case, which is
known as the Ḧolder inequality.

Inequality 4 (Hölder's Inequality) For any nonnegative de�nite probability distributions,
if u; v 2 R n , then

jhu; v ij � k ukp � kvkq with 1 � p; q and
1
p

+
1
q

= 1; (3.194)

wherekxkp is the p-norm orLp-norm, de�ned by

kxkp = ( jx1jp + jx2jp + � � � + jxn jp)1=p : (3.195)

This is a direct result of the convexity of the linear space in its dimension. As you can see,
the Cauchy-Schwarz inequality is the special case wherep = q = 2.

Likewise, we have inequalities of coherence functions for any classical probability
distributions

g(2)
a;b(0) �

p

q
g(p)

a;a(0) q

q
g(q)

b;b(0) with
1
p

+
1
q

= 1: (3.196)

When this inequality applies to the same state, we have

g(2) (0) � p

q
g(p)(0) q

q
g(q)(0) with

1
p

+
1
q

= 1: (3.197)

Moreover, we can setu andv in Eq. (3.194) to be(j� j2)m and(j� j2)n , respectively. Thus,
the inequality yields

g(m+ n)(0) � p

q
g(mp)(0) q

q
g(nq)(0) with

1
p

+
1
q

= 1: (3.198)
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3.5.1.5 CHSH Inequality

So far we have only discussed nonclassicality condition based onP-function negativity.
There are other types of inequalities that result from the non-local character of quantum
mechanics. More speci�cally, Bell type inequalities identify certain results that are ex-
cluded by local hidden-variable theories. As these inequalities are violated, quantum me-
chanics predicts situations in which the non-local character is in presence. The CHSH
inequality is a type of Bell inequality, named after John Clauser, Michael Horne, Abner
Shimony, and Richard Holt, who described it in a much-cited paper published in 1969
[155]. The inequality is ful�lled by two postulates about macrorealsim (macroscopic real-
ism) [156]:

Macrorealism: “A macroscopic object, which has available to it two or more
macroscopically distinct states, is at any given time in a de�nite one of those
states.”

Noninvasive measurability:“It is possible in principle to determine which of
these states the system is in without any effect on the state itself, or on the
subsequent system dynamics.”

Thus we have

Inequality 5 (CHSH Inequality) For any classical theory satisfying macrorealism

jSj = jE(a; b) � E (a; b0) + E (a0; b) + E (a0; b0)j � 2; (3.199)

whereE(a; b) etc. are the quantum correlations of the two observalesa; b.

Without loss generality, assume all events have outcomef = f� 1; 1g. Then the correla-
tion is de�ned as

E (a; b) = hf (a)f (b)i =
n11 + n� 1;� 1 � n1;� 1 � n� 1;1

n11 + n� 1;� 1 + n1;� 1 + n� 1;1
: (3.200)

If we can arbitrarily assign+1 or � 1 to each observable without considering the consis-
tency, the upper bound ofS is 4.

If the measurement is conducted on a qubit (i.e., or any two-level system), the maxi-
mum value ofjSj is the Tsirelson bound [157],

S < 2
p

2V < 2
p

2; (3.201)

where the visibilityV is de�ned as the maximum quantum correlation,i.e., [76]:

V = jE (a; b)jmax : (3.202)
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Therefore,V > 1=
p

2 � 70:7%is a necessary condition for violating the CHSH inequal-
ity.

In the low measurement ef�ciency case (also the case in this work),V is related to
g(2) (0) and we have the necessary condition forg(2) (0) to violate the CHSH inequality. In
this case, the visibilityV can be approximated by [76]

V '

P
i pai ;bi �

P
i 6= j pr i pbjP

i pai ;bi +
P

i 6= j pr i pbj

=
g(2)

a;b � 1

g(2)
a;b + 1

: (3.203)

The necessary condition for the system to violate the CHSH inequality becomes

g(2)
a;b >

p
2 + 1

p
2 � 1

: (3.204)

There has been tremendous progress in the achievable value ofg(2)
a;b, and largeg(2)

a;b is
crucial for the high-�delity, long-distance quantum network applications [76].

3.5.1.6 Inequality for Wigner Function Negativity

Additionally, we require an inequality to deduce the negativity of the Wigner function.
To achieve this, we employ the well-known Chebyshev inequality from statistics that re-
stricts the likelihood of a random variable deviating from its anticipated value by a speci�c
margin.

Inequality 6 (Statistical Chebyshev Inequality) Let X 2 R N with expected value� =
E[X ] and covariance matrixV . If V is a positive-de�nite matrix, for any real numbert
and nonnegative joint probabilityP(X ) � 0, we have

Pr
� p

(X � � )T V � 1(X � � ) > t
�

�
N
t2

(3.205)

For a single particle state, we have the joint probability distributionW(x; p) in the phase
space and their covariance matrix is always positive de�nite. Therefore, if the inequality
Eq. (3.205) is violated, then it proves the Wigner function negativity of this state.

3.5.2 Hierarchy in Quantum States

A given “quantum effect” may require only a portion of quantum mechanics for its expla-
nation. There is no such a universal measure of “quantumness” of a given effect. However,
the complexity of realizing distinctive quantum phenomena is related to their quantum
characteristics, which can be used to de�ne a hierarchy of quantum witnesses and their
associated quantum advantages,e.g.in communication and computation [73, 151, 152].
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Figure 3.4: The quantum state classi�cation discussed in Sec. 3.5.2.a is the set of states
with negative Wigner functions.b is the set of states that can not be represented by a
classical mixture of Gaussian states, known as quantum non-Gaussian states (QNG).c is a
set of states with theP-function negativity, known as non-classical states (NC).d contains
all states in general. These sets satisfya � b � c � d. The black dashed arrow represents
a possible trajectory of a state with a negative Wigner function to a general state without
any quantum witnesses owing to the presence of classical factors, such as loss and classical
�uctuations.

The lowest member of this hierarchy are the nonclassical (NC) states, which has been
discussed in Sec. 3.5.1 [158]. They are states withP-function negativity, which rules out
them being statistical mixtures of coherent states. The “bad behaved”P-function of NC
states is proven to be associated with quantum information and metrology advantages [3].

The second category is the quantum non-Gaussian (QNG) state, which cannot be rep-
resented as a statistical mixture of pure Gaussian states [149, 150, 159]. QNG states are a
subset of NC states. This can be easily obtained by noticing that any coherent state is also
a Gaussian state [133]. Therefore, a QNG state is considered to be “more quantum” than
an NC state. Similarly, there are experimental criteria to verify the non-Gaussianity [152,
160].

The last category is those states having a negative Wigner function. This category is
a subset of QNG states. This is obvious by noticing the Wigner function of any Gaussian
state must be positive de�nite. Hence a state with the Wigner function negativity can not
be represented by a mixture of Gaussian states. However, a QNG state can still have a
positive de�nite Wigner function [160]. Wigner function negativity is proven to be vital in
quantum computational advantages [4].

In conclusion, the aforementioned quantum features divide quantum states into four
sets, each being a subset of the previous one offering different quantum advantages. Fig-
ure 3.4 shows these sets in relation to each other. The dashed black line schematically
represents how quantum features are lost due to the presence of dissipation.
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“Quantum mechanics has
shown us that the world is
far stranger than we ever
imagined, and that the behavior
of even macroscopic objects
can be unpredictable and
non-intuitive.”

– Sean Carroll

CHAPTER4
Quantum Macroscopicity

The spooky features of quantum mechanics are not limited to the microscopic world of
subatomic particles, atoms, and molecules. In principle, they should also be exhibited by
the macroscopic objects that we encounter in our daily life. However, it is intriguing why
macroscopic objects never exhibit quantum effects.

One often-used explanation is the smallness of Planck's constant. As explained in
Sec. 3.4.1.3, when~ approaches 0, the dynamics of quantum probability become identical
to those predicted by the classical Liouville equation. The de Broglie wavelength� = h=p
shows that as an object becomes more macroscopic, its quantum wavelength becomes
shorter, and thus the features associated with the wave-like features of quantum mechanics
are less visible.

Alternatively, decoherence theory suggests that a system loses its quantum features
when interacting with a suf�ciently large classical environment. However, the formalism
of decoherence is still based on the unitary quantum interaction (i.e., with a thermal reser-
voir). More precisely, the process of decoherence arises when a quantum system becomes
entangled with its environment, such as when it interacts with other particles [161]. The
quantum system together with the environment that it couples to is a closed system. Such
a closed system should be restricted to the quantum description as all interactions are uni-
tary. The origin of the quantum decoherence in this case is unclear and needs to be further
explained [161, 162].

Many take it for granted that quantum theory can be applied to macroscopic scales.
But there are good reasons to consider the possibility of its failure beyond a certain scale.
One compelling reason is that quantum theory allows for a massive object to be in a su-
perposition of locations, which according to general relativity results in a superposition of
spacetime geometry. Such a superposition is not well-de�ned in the framework of general
relativity [34–36]. A sketch of this con�ict is shown in Fig. 4.1.

Another reason is related to what happens at the Planck length scalelP, which can be
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Figure 4.1: A sketch of a debatable spacetime in superposition caused by a massive object
in a superposition state. Colored lines represent curved spacetime.

de�ned in the following equations

2
GMe�

c2
= lP; (4.1a)

M e� =
1
2

~c
lP

1
c2

; (4.1b)

where LHS of eq. (4.1a) is the Schwarschild radius of a massM e� andM e� is the effec-
tive mass of the quantum �uctuation energy of wavelengthlP. This means, at this scale,
quantum �uctuations generate enough energy to produce black holes. The fact that both
quantum and gravitational effects are equally signi�cant at the Planck length scale causes
problems in observing physics and interpreting causality at that scale. This is often de-
scribed as “spacetime becomes a foam at the Planck scale” [163]. Some quantum gravity
theories propose that there exists a minimum observable length scale, or that spacetime is
discrete [164–167]. The granularity of spacetime would result in non-unitary time evo-
lution of quantum systems and an intrinsic decoherence process [168, 169]. One way to
incorporate this phenomenologically in (the non-relativistic limit of) quantum theory is to
postulate modi�ed commutator relations [1, 170–172], or to have a nonlinear Schrödinger
equation [1, 5, 34, 173].

Experimental tests con�rm quantum mechanics impressively so far. Especially the
past decade has witnessed so-called the second quantum revolution,i.e., Quantum 2.0.
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The growing capabilities in carefully controlled experiments can extend the observation
of quantum phenomena to increasingly macroscopic objects, such as entangled massive
mechanical resonators [59, 60, 97], nonclassical quantum mechanical resonators [52, 53,
61, 62, 75, 92, 174, 175], and matter-wave interference [8, 176–178]. Experiments on
macroscopic quantum phenomena may help theorists to build new frameworks [1, 9, 37–
39] or even lead to new scienti�c discoveries. In recent years, there have been emerging
proposals and experiments to test the effect of gravity on quantum systems, such as atomic
interferometry [8, 177, 179–184], atomic clocks [185, 186], and quantum optics [170,
187]. Particularly, massive and macroscopic optomechanical systems are well-suited to
achieve this goal [1, 171, 172, 187–190].

In this section, we �rst describe one way to quantify macroscopicity across different
experiments. Then we describe two approaches to modifying standard quantum theory to
account for quantum gravity effects phenomenologically.

4.1 Macroscopicity

Various experiments in different systems have been suggested to demonstrate quantum
features at macroscopic scales. This raises the question of how to objectively assess the
degree of macroscopicity reached in different experiments. Such an approach should allow
us to compare different systems, for example: oscillating micromirrors [191], oscillating
membranes [81], levitated nanospheres [52, 53], and even atomic interferometers [178] in
an unbiased way.

To see this problem more explicitly, in interferometric experiments with atoms, molecules,
or Bose-Einstein condensates, the wave nature of objects with more than104 atomic mass
units has been con�rmed, with state-of-the-art delocalization achieved over a length of me-
ters and a time scale of seconds [7, 8, 178–180]. Meanwhile, mechanical devices exhibit
high mass compared to other quantum systems, and recent experiments have demonstrated
nonclassical states in various mechanical resonators [13, 61, 62, 75, 92, 175], involving
a truly macroscopic number of atoms, up to1016. However, the quantum delocalization
associated with these resonators' vibrational state is limited to about one picometer in
conceivable setups. Therefore, some matter-wave experiments might surpass the macro-
scopicity of a mechanical resonator, raising uncertainty regarding their comparison with
other macroscopic quantum effect tests.

To solve this problem, a macroscopicity assessment that is universally applicable and
can evaluate the empirical parameters of a given experiment has been introduced in Ref.
[2, 192]. In summary, a general modi�ed quantum theory has been developed that accounts
for the decoherence of quantum experiments at a speci�c macroscopic scale. The com-
parison between the observed decoherence and the decoherence in this modi�ed quantum
theory yields the assessment of the macroscopicity.
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The proposal of Refs. [2, 192] considers a modi�cation of the quantum theory that
satis�es the following requirements:

1. Invariant under Galilean transformations, avoiding a distinguished frame of refer-
ence;

2. The exchange symmetry of identical particles is unaffected;

3. Adding an uncorrelated system leaves the reduced state unchanged;

4. Displays scale invariance with respect to the center-of-mass of a compound system.

Using the formalism of quantum dynamical semigroups and a theorem by Holevo [193]
for any Galilean invariant theory, the modi�cation to the von Newmann equation for the
state�̂ of a single particle should take the form of

@t �̂ = [ Ĥ; �̂ ]=i~ + L̂ 1�̂; (4.2)

with an additional Lindblad generator̂L 1�̂ given by

L̂ 1�̂ =
1
�

Z
d3qd3pg(q; p)D[L̂(q; p)]�̂; (4.3)

whereD[L̂]�̂ = L̂�̂ L̂y � f L̂yL̂; �̂ g=2. The operator̂L displaces a single particle in the phase
space by an amountq, p, and is given by

L̂(q; p) = e
i
~ (P �q� p �X ) ; (4.4)

andg(p; q) is a positive, normalized phase-space distribution. The modi�ed von Neumann
equation Eq. (4.2) reduces to the normal equation when the standard deviation ofg(p; q)
statistics� q = � p = 0 (i.e., g(p; q) is a delta function). This modi�ed term can be inter-
preted as the classicalizing of a delocalized state. The parameter� in Eq. (4.3) estimates
the time scale for the decoherence of the state whose delocalization is greater than critical
length scale~=� p in position or greater than~=� q in momentum. Remarkably, if one takes
� q = 0, the special form of Eq. (4.3) describes the results of the continuous spontaneous
localization (CSL) theory [5, 6, 194], which is the best studied nonlinear modi�cation of
quantum mechanics. Within this theoretical framework, the superposition of macroscopi-
cally distinct positions is predicted to collapse rapidly.

Usually, we use the electron as the reference particle with decoherence time� e and take
ge(q; p) to be a Gaussian distribution with standard devitations� p and � q, respectively.
With this, Eq. (4.4) can be extended as a weighted sum of single particle operators in the
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form of

L̂N (q; p) =
NX

n=1

mn

me
e

i
~ (P n � m e

m n
q� p �X n ) ; (4.5)

with

L̂ N �̂ =
1
� e

Z
d3qd3pge(q; p)D[L̂N (q; p)]�̂: (4.6)

The center-of-mass motion of a mechanical resonator of total massM can be approximated
by treating the single degree of freedom as a single-particle, using Eq. (4.3). The rate�
and the phase-space distributiong(q; p) in this form can be represented by

1
�

=
1
� e

1
m2

e

Z
d3qd3pge(q; p)j ~%(p)j2; (4.7)

g(q;p) =
�M 3

� em5
e
ge

�
M
me

q; p
�

j ~%(p)j2; (4.8)

where~%(p) =
R

d3x%(x)e� i p �x =~ is the Fourier transform of the mass density%(x) of the
oscillator. The effective coherence time� depends on the relation between the size of
the mechanical resonator and the critical length scale~=� p of the reference distribution
ge. Substituting the effective coherence time� and the effective phase distributiong(q; p)
into Eq. (4.2) yields the constraint on the single electron coherence time� e from various
experimental results. Finally, the assessment of the macroscopicity� is given by

� = log10

� � e

1 s

�
: (4.9)

For a massive oscillatorm � me, the expressionge in Eq. (4.7) approximates a delta
function in the variableq. Therefore, the translationq is negligible in the effective phase
space distributiong(q; p). As a result, Eq. (4.5) and (4.6) can be approximated as

L̂ N �̂ =
1
� e

Z
d3pge(� p; p)D[L̂N (p)]�̂; (4.10)

L̂N (p) =
NX

n=1

mn

me
e

� i
~ p �X n ; (4.11)

wherege is an isotropic Gaussian momentum distribution given by

ge (� p; p) =
e� p2=2� 2

p

�
2�� 2

p

� 3=2
: (4.12)
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To make this example more explicit, let's consider a bulk acoustic resonator with the
geometry of a Fabry-Ṕerot cavity [72, 174] with the acoustic mode taking the form

u(r n ) = exp
�

�
y2

n + z2
n

w2
0

�
cos

�
�

qxn

L

�
ex ; (4.13)

of waist w0, mode indexq, lengthL andr n = ( xn ; yn ; zn ) is the spatial coordinate. A
single phonon excites a displacement �eld described by

X n = r n + u (r n ) x0X̂; (4.14)

wherex0 =
p

~=me� ! is the zero-point �uctuation amplitude,me� is the effective mass,
r n is the equilibrium position forn-th particle and̂X is the position operator. In a contin-
uous limit, the Lindblad operator thus yields

L̂(p) =
1

me

Z
d3r%(r )e� i p �r =~e� i p �u (r )x0 X̂=~; (4.15)

where the integral is over real space. We assume a homogeneous mass density%(r ) = �%
and expand the Lindblad operator Eq. (4.15) to �rst order inX̂. Thus a diffusion rate for
the oscillator is given by

� =
m2

e�

m2
e� e

(4x0=L)2

1 + � 2
w

Z
d�

e� � 2=2� 2
L

p
2�� L

1 � (� )q cos�

(1 � � 2q2=� 2)2 ; (4.16)

where� w = w0=(~=� p) and� L = L=(~=� p) are the ratios of the geometric lengths over
the critical modi�cation length~=� p. The maximum rate� with respect to� p can be
analytically solved as [174]

max
� p

� �

r
3�
2e3

6~�%
m2

e!� e

L
q

=

r
3�
2e3

6~�%
m2

e� e

�
L
q

� 2 1
2�v

: (4.17)

In the rotating frame of the oscillator, the evolution of the density matrix�̂ is governed by
the master equation, which includes the energy decay rate
 #,

_̂� � (� + 
 #) D[â]�̂ + � D[ây]�̂: (4.18)

This coarse-grained master equation is averaged over the rapidly oscillating terms. With
this equation of motion, we could compare the experimental results of such an oscillator
to a single particle. More examples are calculated in Refs. [192].

To date, the most macroscopic mechanical resonator with Wigner function negativities
is reported to have� = 11:3 [174] and the most macroscopic matter-wave interferometer
experiment is assessed to have� = 14:0 [178].
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4.2 Modi�ed Quantum Theory

The lack of compatibility between general relativity and quantum theory indicates the pos-
sibility of modifying the quantum theory to bridge this gap. The requirement of macrore-
alism for a plausible description of physical reality remains a topic of debate. There are
competing descriptions of nature that predict signi�cantly different effects at macroscopic
scales, despite being compatible with all microscopic experiments and astrophysical obser-
vations to date. While metaphysical arguments may be made in support of one theory over
another, their empirical status is equivalent, and only future experiments can differentiate
between them. Here I highlight two proposed theories that suit quantum optomechanical
experiments. One approach is to introduce modi�ed commutator relations for canonical
observables, which can be tested by monitoring the quantum-level motion of massive pen-
dulums [170–172, 195]. The other is to extend the Schrödinger equation nonlinearly to
account for the possible granularity of spacetime [1, 2, 188, 189].

4.2.1 Deformed Commutator

It has been proposed that modi�ed commutators could provide a phenomenological means
for incorporating quantum gravitational effects (in particular, discrete spacetime) [195–
197]. This motivates the idea of the so-called generalized uncertainty principles (GUPs)
in the following form [171]:

� q� p �
~
2

 

1 + � 0

�
LP � p

~

� 2
!

; (4.19)

which is equivalent to

[q; p] = i~

 

1 + � 0

�
LPp

~

� 2
!

; (4.20)

whereLP is the Planck length and� 0 is a dimensionless parameter. This modi�cation
indicates that the minimal uncertainty on the position is

� q �
~
2

 
1

� p
+ � 0

�
LP

~

� 2

� p

!

�
p

� 0LP; (4.21)

If we assume� 0 � 1, the second term in Eq. (4.19) will be negligible unless the momentum
�uctuation satis�es~=� p � Lp. However, the experimental constraint on the parameter
� 0 is still needed to verify or rule out this framework. By taking the usual dimensionless
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coordinates~q and~p, we have

[~q;~p] = i
�
1 + � ~p2

�
; (4.22)

H =
~! 0

2

�
~q2 + ~p2

�
; (4.23)

where~q =
p

(m! 0) =~q, ~p = p=
p

~m! 0 and� = � 0 (~m! 0=m2
Pc2) is a small dimension-

less parameter. If we apply the following transform to~p

~p =
�

1 +
1
3

�p 02
�

p0; (4.24)

we reobtain the familiar canonical commutation relation

[~q; p0] = i; (4.25)

with a modi�ed Hamiltonian expanded to the �rst order in�

H =
~! 0

2

�
~q2 + p02

�
+

~! 0

3
�p 04: (4.26)

Note that this Hamiltonian is equivalent to an anharmonic oscillator with Kerr nonlinearity.
It implies two relevant effects: the appearance of the third harmonic and the dependence
of the oscillation frequency on the amplitude. That is

~q = q0

�
sin(~!t ) +

�
8

q2
0 sin(3~!t )

�
; (4.27)

~! =
�

1 +
�
2

q2
0

�
! 0; (4.28)

whereq0 is the oscillating amplitude. The challenging part in practice is that all materials
exhibit intrinsic Kerr nonlinearity for large oscillating amplitudes, yielding the same ex-
perimental effects. It is impossible to distinguish one from another. The best constraint on
� 0 to date is reported to be� 0 � 3 � 107 [171].

4.2.2 Nonlocal Dynamics

Another approach involves modi�cation of the standard Schrödinger equation. This �eld
of research seeks to develop general models of quantum gravity that can be tested via
observation in the absence of a de�nitive quantum gravity theory. One class of models
deserving special attention is those that uphold local Lorentz invariance (LLI) as a guid-
ing principle while viewing spacetime as emerging from more fundamental discreteness
[198]. Some types of nonlocal modi�cations of standard local dynamics are suggested
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to be able to reconcile LLI with fundamental discreteness [199, 200]. Along this line,
the requirement of LLI together with the avoidance of classical instabilities effectively re-
stricts dynamics to either standard local dynamics with 1st or 2nd order in spacetime, or to
nonlocal dynamics with in�nite orders of derivatives according to Ostrogradsky's theorem
[201].

As an example, modifying the Klein-Gordon equation for a massive free scalar �eld in
�at spacetime involves replacing(� + � 2) with f (� + � 2), wheref is a nonpolynomial
function to avoid the generic Ostrogradsky instabilities [201]. Additionally, the function
f must satisfy three requirements:

1. f (k2) = 0 iff k2 = 0: ensure there exist no classical runaway solutions;

2. The nonlocal QFT must be unitary: conservation of probability;

3. The nonlocal QFT must process a global U(1) symmetry: to ensure a probabilistic
interpretation can be given to the wave function.

To ensure a suitable power series expansion that characterizes deviations from standard
local �eld theory, the de�nition off must incorporate a characteristic, covariantly de�ned
scale� . Thus a nonlocal Lagrangian for a free complex, massive, scalar �eld� (x) is

L = � (x)� f
�
� + � 2

�
� (x) + c.c. : (4.29)

In Eq. (4.29), without losing generality, we assumef is an analytic function and can be
formally expanded as a power seriesf (z) =

P 1
n=1 bn � nzn . Thus, the nonlocal dynamic

equation reads

f (S) (t; x ) = V(x) (t; x ); (4.30)

whereS = i~ @
@t+

~2

2�
@2

@x2 is the standard Schrödinger operator, andV(x) is the potential.
Considering the case of a 1-D harmonic oscillator withV(x) = 1

2m! 2x2, wherem is
its effective mass and! is its natural resonance frequency.f (S) can be expanded as

f (S) = S +
1X

n=2

bn

�
� 2m

~2

� n� 1

l2n� 2
k Sn (4.31a)

= S +
1X

n=2

bn (� 2)n� 1

�
lk

xZPF

� 2(n� 1)

Sn (4.31b)

= S +
1X

n=2

bn (� 2)n� 1� n� 1Sn ; (4.31c)

wherelk is the nonlocality length scale,xZPF =
p

~=m! is the zero-point motion of the
oscillator, � = ( lk=xZPF )2 is a dimensionless parameter that characterizes the nonlocal
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Figure 4.2: Sketch of the time evolution of a coherent state in the phase space. The solid
circles represent the variance of the coherent state. The black dashed circles represent the
unperturbed variances under the standard quantum theory.

dynamic deviation, andbn (assumed to beO(1)) are the dimensionless expansion coef�-
cients of the analytical functionf (S). This expression means that if the zero-point motion
is comparable tolk (i.e., � � 1), the higher-order nonlocal dynamical terms will be signi�-
cant in the state evolution. Notably,lk is not necessarily the same as the Planck lengthLP,
and so needs to be experimentally constrained.

The evolution of a displaced ground state —i.e., a quantum coherent state — under
Eq. (4.31a) can be solved perturbatively when� � 1. This assumption is intuitively correct
since a physically reasonable solution of the modi�ed Schrödinger equation should reduce
to the solution of the standard Schrödinger equation in the nonrelativistic limit to meet all
well-tested physics.

The results for perturbations around a coherent statej� i are

h~xi =
p

2j� j cos(~t)
�

1 +
1
4

� j� j2b2[cos(2~t) � 1]
�

+ O
�
� 2

�
; (4.32a)

h~pi =
p

2j� j sin(~t)
�

1 +
1
4

�b2
�
j� j2(7 + 3 cos(2~t)) � 2

�
�

+ O
�
� 2

�
: (4.32b)
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The variances of the position and the momentum are

Var(~x) =
1
2

�
1 � �b2

��
6j� j2 � 1

�
sin2(~t)

�	
+ O

�
� 2

�
; (4.33a)

Var(~p) =
1
2

�
1 + �b2

��
6j� j2 � 1

�
sin2(~t)

�	
+ O

�
� 2

�
; (4.33b)

where~x, ~p, and~t are dimensionless variables, de�ned as~x � x=xZPF , ~p � p=pZPF and
~t � !t , respectively.j� j is the displacement amplitude of the coherent state,b2 � 1 is the
expansion coef�cient off . The position and momentum present third harmonics due to the
nonlocal dynamics. More importantly, the variances of the position and the momentum in
Eq. (4.33) undergo a synchronous, cyclic squeezing of order� as shown in Fig. 4.2. This
spontaneous, oscillating squeezing is a highly signi�cant phenomenon that is not likely to
be generated by other effects. The amplitude of this squeezing is� 6� j� j2. Apparently, to
better test or discover evidence of this phenomenological theory, a larger amplitude and a
larger mass, which equate to a more macroscopic system in certain regards, are preferred.
So far the best constraint onlk is provided by the LHC, givinglk � 10� 19 m [202].
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“Super�uid helium is one of
the most remarkable phenom-
ena in nature, a truly fascinating
subject for scientists and physi-
cists.”

– Richard Feynman CHAPTER5
Super�uid Helium Filled Fabry-Ṕerot

Cavity

Chapters 2-4 provided an overview of the scienti�c motivations and relevant theoretical
backgrounds of my graduate research. This chapter focuses on the implementation of the
experimental system. Speci�cally, we utilized a Fabry-Perot cavity �lled with super�uid
helium-4. In this chapter, I will describe the details of this system, including its optical
and mechanical modes as well as the optomechanical interaction between them. Further-
more, I will elaborate on the unique material advantages of using super�uid helium in
optomechanical applications.

5.1 Experiment Overview

Figure 5.1(a) shows a schematic of the device. The main part of the device is an optical
Fabry-Ṕerot cavity. This optical cavity is formed between two �ber ends, with each being
curved and coated with high-re�ectivity distributed Bragg re�ectors (DBR). This type of
cavity is also known as a �ber cavity.

Fibers are con�ned in glass ferrules whose inner diameter (ID) is only5 � 3 µm larger
than the �bers' outer diameter, as shown in Fig. 5.1(b). The two ferrules are aligned by
threading a scrap piece of �ber through both of them. These two ferrules were positioned
with � 0:5 mm distance between the ferrule faces, and then they were epoxied on the top
of the substrate. The detailed cavity building process can be found in Refs. [70, 71, 203,
204].

There are a number of good reasons to use a �ber cavity in this work. First, its small
mode volume results in strong optomechanical coupling. In addition, the traveling light
in each �ber couples to the cavity mode without anyin situ alignment optics (albeit with
coupling ef�ciency� � � 0:3 in the present devices). Last but not least, such construction
and alignment are robust to thermal expansion during cooldown and are resilient after
several thermal cycles.

The optical modes are con�ned by the two high-re�ectivity coatings, and achieve an
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Figure 5.1: (a) A schematic of the main experiment device. The orange represents the
optical intensity contour. The purple and blue area stands for the liquid helium density
wave. Several black lines on each �ber end represent the optical DBR coating. (b) A
photo of the empty cavity in the experiment. The inner brighter cylinders are the �ber, and
the outer wider cylinders are glass ferrules. (c) A zoom-in view of the �ber end (dashed
orange box in (b)). The center of the �ber end is a curved smooth surface.

optical �nesseF � 4:36(1) � 104. The empty space of the cavity is �lled with super�uid
helium, which serves as the host of the mechanical resonator. The density wave of the
helium acts as the mechanical resonator. The mechanical modes are mainly con�ned by
the impedance mismatch between the glass and liquid helium, with a mechanical �nesse
� 100(details c.f. Sec. 5.2).

The dielectric constant of liquid helium is density-dependent. Hence, the optomechan-
ical coupling arises from the change of the optical resonance frequency due to the presence
of the density wave. In turn, the density distribution is altered by the electrostrictive force
exerted by the gradient of the optical intensity. This is the so-called photoelastic coupling.
As discussed in detail in Sec. 5.4, this coupling is proportional to the overlap between the
optical intensity and the amplitude of the mechanical mode (i.e., change of the density).
Both types of modes are governed by the same wave equation and con�ned by the same
boundaries, thus sharing the same eigenmode set. Given the geometry of the cavity, the
intensity distribution of an optical Gaussian mode is approximately the same as the den-
sity pro�le of the mechanical Gaussian mode having twice the longitudinal index. As a
result of eigenmode orthogonality, this relationship yields the single-mode coupling be-
tween any given optical Gaussian mode to one mechanical Gaussian mode, as illustrated
in Fig. 5.1(a).

Lasers are sent to one side of the cavity to excite the cavity mode. The cavity mode is
monitored by allowing part of the intra-cavity light to travel; back into the �ber. The input
coupling ef�ciency� � = � ex=� is measured by the heterodyne detection scheme through
both phase modulation and amplitude modulation [70, 71, 203, 204], giving� � = 0:29(1)
[205].
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